	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 03	34											
B.Com. DEGREE EXAMINATION – CORPORATE SECRETARYSHIP													
	SECOND SEMESTER – APRIL 2022												
UCO 2302 – STATISTICS FOR DECISION MAKING													
(21 BATCH ONLY)													
,													
Date: 27-06-2022 Dept. No. Max. : 1 Time: 01:00 PM - 04:00 PM													
	SECTION A												
Ans	swer ALL the Questions												
1.	Define the following terms with examples.												
a)	Central Tendency.	K1	CO1										
b)	Median.	K1	CO1										
c)	Moving average method.	K1	CO1										
d)	Regression line.	K1	CO1										
e)	Index Numbers.	K1	CO1										
2.	2. Fill in the blanks:												
a)	When mean is 79 and variance is 64, C.V	K1	CO1										
b)	If $Q_3=30$, $Q_1=20$, Med. =25, Coefficient of skewness shall be	K1	CO1										
c)	The regression analysis helps us to study the relationship between the variables.	K1	CO1										
d)	Laspeyre's index gives an Bias whereas Paache's index downward bias.	K1	CO1										
e)	rule is used to find an initial feasible solution.	K1	CO1										
3.	Match the following	(5 x	1 = 5)										
a)	Rank Correlation $= (Q_3 + Q_1)/2$	K2	CO1										
b)	Time Reversal test $= A.M.>G.M.>H.M.$	K2	CO1										
c)	Coefficient of Quartile deviation $= Q_3 + Q_1 + 2Q_2$	K2	CO1										
d)	Negative coefficient of skewness = $1 - 6\sum D^2/N^3 - N$	K2	CO1										
e)	Asymmetrical distribution $= P_{01} X P_{10} = 1$	K2	CO1										
4.	Indicate the whether the following statements are TRUE or FALSE	(5 x	1 = 5)										
a)	Range is the best measure of dispersion.	K2	CO1										
b)	In a symmetrical distribution mean = median = mode.	K2	CO1										
c)	Karl Pearson's coefficient of correlation always lies between 0 and +1.	K2	CO1										
d)	The regression coefficient of Y on X is denoted by the symbol b_{xy} .	K2	CO1										
e)	The circular test is an extension of the time reversal test.	K2	CO1										

Г

7112	wer	any TWO	of the fo	llowing	g in 10	0 words	6					(2 x	10 = 20))		
5.		ply standard						he data	a given	below	:		K3	CO2		
	Size of the item				3.5 4.5 5.5			6.5 7.5 8.5				5				
		Frequen	CV.		3	7	22	60	85	32	8					
-	Frequency										Ū		K3	CO2		
).	From the data given blow construct Fisher's quantity index number:Commodity20042005															
					ity											
				A		2	4	6		18	_					
				В		5	3	2		2	_					
				С	7		8	4	-	24						
'.	Ca	lculate standard deviation from the data given below:									K3	CO2				
		Size	3.5	4.		5.5	6.5		7.5	8.5		9.5				
		Frequency	3	7		22	60		85	32		8				
5.	Illı	istrate comm	non meas	sures of	centra	ıl tender	ncy with	n suital	ole exa	mples.			K3	CO2		
						SF										
ns	wer	any TWO	of the fo	llowing	, in 10							(2. x	10 = 20)		
).	swer any TWO of the following in 100 words(2 xFrom the following data, analyse the coefficient of rank correlation between X and Y.													, CO3		
•			56	50	65	44	38	44			15	26	K4	000		
		/ 50	35	70	25	35	58	75	_		55	26	$\left \right $			
0.		plain the fir											le K4	CO3		
0.	LA	-					loments	about		igili ai	iu ilica	.11 101 111		003		
	set	of numbers											IZ A			
1		of numbers		and its	source											
	Ex	plain second	lary data				vsis in h	usines	5				K4	CO3		
	Ex	plain second	lary data			es Analy			S				K4 K4	CO3		
2.	Ex Ex	plain second	lary data portance	of Tim	e Serie	es Analy SF	CTIO		S				K4	CO3		
2.	Ex Ex wer	plain second plain the im any ONE of	dary data portance of the fol	of Tim	in 250	es Analy SF Words	CTIO	N D				(1 x	K4	CO3		
1. 2. . 3.	Ex Ex wer	plain second plain the im any ONE of easure the m	lary data portance of the fol ean, med	of Tim lowing lian and	e Serie in 250 l mode	es Analy SH words from th	CCTIO	N D	ata:				K4	CO3		
2. .ns	Ex Ex wer	plain second plain the im any ONE of easure the m /ages	dary data portance of the fol ean, med 15-	of Tim lowing lian and 20-	in 25(1 mode 25-	es Analy SH words from th 30-	CCTIO	N D wing da 40-	ata: 45-	50-	55-	60-	K4	CO3		
2.	Ex Ex wer	plain second plain the im any ONE of easure the m	dary data portance of the fol ean, med 15- 19	of Tim lowing lian and 20-	e Serie in 250 l mode	es Analy SH words from th	CCTIO	N D	ata:	50- 54	55- 59	60- 64	K4	CO3		
2.	Ex Ex Wer Me	plain second plain the im any ONE of easure the m /ages	dary data portance of the fol ean, med 15- 19	of Tim lowing lian and 20- 24	in 25(1 mode 25-	es Analy SH words from th 30-	CCTIO	N D wing da 40-	ata: 45-			60-	K4	CO3		

1.	Evaluate Karl Pearson's Correlation coefficient for the data given below:												K5	CO4		
	х	45	55	56	5	8	60	65	6	8	70	75	80	85		
	Y	56	50	48	6	0	52	64	6	5	70	74	85	90		
								SECT	IOI	N E						
nsv	ver a	ny O	NE of t	the foll	lowing	g in 2	50 wor	ds						(1 x 2	0 = 20)
							d by a n equat		of	f stude	nts ii	n HRM	1 and	Financial	K6	CO
	HRN	Л	80	45	55	56	58	60		65	68	70	75	85		
	FM		82	56	50	48	60	62		64	65	70	74	90		
5.	Cons	truct	a soluti	ion for	the tra	inspo	rtation	proble	m b	y Vog	el's ap	oproxin	nation r	nethod.	K6	CO
						D_1	D ₂	2	D 3	D ₄		Suppl	У			
				Q ₁		1	2		1	4		30				
			Q ₂			3	3		2	1	50					
				Q ₃		4	2		5	9		20				
			Demand		k	20	40) 3	30	10						
1			<u>.</u>					I							<u>. </u>	
								*****	***	***						