LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIRST SEMESTER – **APRIL 2023**

PMT1MC01 – LINEAR ALGEBRA

Date: 29-04-2023 Time: 09:00 AM - 12:00 NOON

Dept. No.

Max. : 100 Marks

	SECTION A				
	Answer ALL the questions				
1	Answer the following	(5 x 1 = 5)			
a)	Write the minimal polynomial of $\begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$	K1	CO1		
b)	Define direct sum of a vector space.	K1	CO1		
c)	Give an example for a nilpotent operator.	K1	CO1		
d)	Define T-admissible subspace	K1	CO1		
e)	Write the adjoint of an identity operator	K1	CO1		
2	Iultiple Choice Questions(5 x 1 = 5)				
a)	The eigen values of a nilpotent matrix of order 4 are a) 0, 0, 1, 1 b) 0, 0, 0, 0 c) 1, 1, 1, 1 d) 1, 2, 3, 4	K2	CO1		
b)	Similar matrices have a) Different characteristic polynomial. b) real eigen values c) Non negative eigen values d) Same characteristic polynomial	К2	CO1		
c)	A linear operator has distinct eigen values then it isa) not diagonalizableb) diagonalizablec) nilpotentd) zero matrix	K2	CO1		
d)	Let A be a matrix in rational form. Then each diagonal block of A is a) diagonal matrix b) triangular matrix c) companion matrix d) zero matrix	K2	CO1		
e)	In $R^2(\alpha \beta) = ax_1y_1 + bx_2y_2$ where $\alpha = (x_1, x_2), \beta = (y_1, xy_2)$ is an inner product if a) $a = 0, b = -3$ b) $a = 2, b = 0$ c) $a = 2, b = 2$ d) For any real <i>a</i> and <i>b</i> .	K2	CO1		
	SECTION B				
	Answer any THREE of the following. ($3 \times 10 = 30$)			
3	State and prove Cayley-Hamilton theorem.	K3	CO2		
4	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F .	K3	CO2		
5	Discuss about any four properties of nilpotent operators.	K3	CO2		
6	If U is a linear operator on the finite dimensional space W , then show that U has a cyclic vector if and only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal polynomial for U .	К3	CO2		
7	Prove that an orthonormal set of non-zero vectors is linearly independent. Also construct an infinite orthonormal set.	K3	CO2		
	SECTION C				
1	Answer any TWO of the following . $(2 \times 12.5 = 25)$				
8	a)Let T be a linear operator on a finite-dimensional space V and let c be a scalar.Prove that the following are equivalent.i) c is a characteristic value of T.	K4	CO3		

	ii) The operator (T - cl) is singular (not invertible).		
	iii) det $(T - cI) = 0$		
	b) Suppose $T\alpha = c\alpha$ and if f is a polynomial then show that $f(T)\alpha = f(c)\alpha$		
9	State and prove primary decomposition theorem.	K4	CO
10	 Let α be any non-zero vector in V and let p_α be the T-annihilator of α. Show that (i) The degree of p_α is equal to the dimension of the cyclic subspace Z(α; T). (ii) If the degree of p_α is k, then the vectors α, Tα, T²α,, T^{k-1}α form a basis for Z(α; T). (iii) If U is the linear operator on Z(α; T) induced by T, then then the minimal polynomial for U is p_α. 	K4	CO
11	Let V be a finite-dimensional inner product space. If T and U are linear operators on V and c is a scalar then prove that (i) $(T+U)^* = T^* + U^*$; (ii) $(cT)^* = \overline{c} T^*$; (iii) $(TU)^* = U^*T^*$; (iv) $(T^*)^* = T$	K4	CO3
	SECTION D		
	Answer any ONE of the following . $(1 \times 15 =$	15)	
12	Let V be a finite-dimensional inner product space, and f a linear functional on V. Then show that there exists a unique vector β in V such that $f(\alpha) = (\alpha \beta)$ for all α in V. Illustrate this theorem through an example on R^2 .	K5	CO4
13	Let F be a field and let B be an n x n matrix over F. Then B is similar over the field F to one and only one matrix which is in rational form. If T is a nilpotent transform then discuss about each block in its rational form.	K5	CO4
	SECTION E		
	Answer any ONE of the following . $(1 \times 20 = 2)$	(0)	
14	 a) Let T be a linear operator on the finite-dimensional vector space V over the field F. Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Then show that there is a diagonalizable operator D on V and a nilpotent operator N on V such that (i)T = D + N . (ii)DN=ND.The diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T. 	K6	COS
	b) Let V the space of all polynomials of degree less than or equal to 3. Let T be differential operator on V. Discuss about the properties of the matrix of T in the standard basis. Also write its Jordon form.		
15	write about the existence of cyclic decomposition theorem. Discuss about various possibilities of Jordon forms of A if it has characteristic polynomial $(x - 3)^2(x - 2)^4$ and has minimal polynomial $(x - 3)(x - 2)^2$.	K6	CO

\$\$\$\$\$\$\$