LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2023
PMT1MC01 - LINEAR ALGEBRA

Date: 29-04-2023
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

SECTION A			
Answer ALL the questions			
1	Answer the following	($5 \times 1=5$)	
a)	Write the minimal polynomial of $\left[\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right]$	K1	CO1
b)	Define direct sum of a vector space.	K1	CO1
c)	Give an example for a nilpotent operator.	K1	CO1
d)	Define T-admissible subspace	K1	CO1
e)	Write the adjoint of an identity operator	K1	CO1
2	Multiple Choice Questions	($5 \times 1=5$)	
a)	The eigen values of a nilpotent matrix of order 4 are a) $0,0,1,1$ b) $0,0,0,0$ c) $1,1,1,1$ d) 1, 2, 3, 4	K2	CO1
b)	Similar matrices have a) Different characteristic polynomial. b) real eigen values c) Non negative eigen values d) Same characteristic polynomial	K2	CO1
c)	A linear operator has distinct eigen values then it is a) not diagonalizable b) diagonalizable c) nilpotent d) zero matrix	K2	CO1
d)	Let A be a matrix in rational form. Then each diagonal block of A is a) diagonal matrix b) triangular matrix c) companion matrix d) zero matrix	K2	CO1
e)	In $R^{2}(\alpha \mid \beta)=a x_{1} y_{1}+b x_{2} y_{2}$ where $\alpha=\left(x_{1}, x_{2}\right), \beta=\left(y_{1}, x y_{2}\right)$ is an inner product if a) $a=0, b=-3$ b) $a=2, b=0$ c) $a=2, b=2$ d) For any real a and b.	K2	CO1
SECTION B			
	Answer any THREE of the following.	($\mathbf{3} \times 10=30)$	
3	State and prove Cayley-Hamilton theorem.	K3	CO 2
4	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then prove that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.	K3	CO 2
5	Discuss about any four properties of nilpotent operators.	K3	CO 2
6	If U is a linear operator on the finite dimensional space W, then show that U has a cyclic vector if and only if there is some ordered basis for W in which U is represented by the companion matrix of the minimal polynomial for U.	K3	CO 2
7	Prove that an orthonormal set of non-zero vectors is linearly independent. Also construct an infinite orthonormal set.	K3	CO 2
SECTION C			
Answer any TWO of the following . $\quad(2 \times 12.5=25)$			
8	a)Let T be a linear operator on a finite-dimensional space V and let c be a scalar. Prove that the following are equivalent. i) c is a characteristic value of T.	K4	CO 3

	ii) The operator ($T-c I$) is singular (not invertible). iii) $\operatorname{det}(T-c l)=0$ b) Suppose $T \alpha=c \alpha$ and if f is a polynomial then show that $f(T) \alpha=f(c) \alpha$		
9	State and prove primary decomposition theorem.	K4	CO3
10	Let α be any non-zero vector in V and let p_{α} be the T -annihilator of α. Show that (i) The degree of p_{α} is equal to the dimension of the cyclic subspace $Z(\alpha ; T)$. (ii) If the degree of p_{α} is k, then the vectors $\alpha, \mathrm{T} \alpha, \mathrm{T}^{2} \alpha, \ldots, \mathrm{~T}^{\mathrm{k}-1} \alpha$ form a basis for $Z(\alpha ; T)$. (iii) If U is the linear operator on $Z(\alpha ; T)$ induced by T, then then the minimal polynomial for U is p_{α}.	K4	CO3
11	Let V be a finite-dimensional inner product space. If T and U are linear operators on V and c is a scalar then prove that (i) $(\mathrm{T}+\mathrm{U})^{*}=\mathrm{T}^{*}+\mathrm{U}^{*}$; (ii) $(\mathrm{cT})^{*}=\overline{\mathrm{c}} \mathrm{T}^{*}$; (iii) $(\mathrm{TU})^{*}=\mathrm{U}^{*} \mathrm{~T}^{*}$; (iv) $\left(\mathrm{T}^{*}\right)^{*}=\mathrm{T}$	K4	CO3
SECTION D			
Answer any ONE of the following . \quad (1 x 15=15)			
12	Let V be a finite-dimensional inner product space, and f a linear functional on V . Then show that there exists a unique vector β in V such that $f(\alpha)=(\alpha \mid \beta)$ for all α in V. Illustrate this theorem through an example on R^{2}.	K5	CO4
13	Let F be a field and let B be an $\mathrm{nx} n$ matrix over F . Then B is similar over the field F to one and only one matrix which is in rational form. If T is a nilpotent transform then discuss about each block in its rational form.	K5	CO 4
SECTION E			
Answer any ONE of the following . $\quad(1 \times 20=20)$			
14	a) Let T be a linear operator on the finite-dimensional vector space V over the field F. Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Then show that there is a diagonalizable operator D on V and a nilpotent operator N on V such that $\text { (i) } \mathrm{T}=\mathrm{D}+\mathrm{N} \text {. }$ (ii) $\mathrm{DN}=\mathrm{ND}$.The diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T . b) Let V the space of all polynomials of degree less than or equal to 3 . Let T be differential operator on V. Discuss about the properties of the matrix of T in the standard basis. Also write its Jordon form.	K6	CO5
15	Write abour the existence of cyclic decomposition theorem. Discuss about various possibilities of Jordon forms of A if it has characteristic polynomial $(x-3)^{2}(x-$ $2)^{4}$ and has minimal polynomial $(x-3)(x-2)^{2}$.	K6	CO5

\$\$\$\$\$\$

