LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – APRIL 2023 PMT1MC03 – ORDINARY DIFFERENTIAL EQUATIONS Date: 03-05-2023 Dept. No. Max. : 100 Marks Time: 09:00 AM - 12:00 NOON Max. : 100 Marks SECTION A Answer ALL the questions 1 Answer the following. (5 x 1 =

5) Describe the first order initial value problem. K1 CO1 a) Define linear independence. K1 b) CO1 When do you say that a matrix corresponds to a linear system is fundamental? K1 CO1 c) Define ordinary point. K1 CO1 d) Describe the oscillatory differential equation. K1 CO1 e) 2 Choose the correct answer. $(5 \times 1 = 5)$ The first approximate solution of $x' = x^2$, x(0) = 1, as per Picard's successive a) approximation method is K2 CO1 (c) 1 - t (d) t^2 (a) 1 (b) 1 + tThe Wronskian of e^t and e^{-t} is **b**) K2 CO1 (a) 1 (b) -1 (c) 2 (d) -2When a linear equation x''' - 4x'' + 10x' - 2x = 0 is transformed to linear system c) x' = Ax, where A is K2 CO1 1 01 [O] 0 [O] 1 [O] 2 01 [0] 2 01 1 (c) 0 2 (a) 0 0 1 (b) 0 0 0 2 (d) 0 0 -5 -10 Which of the following is not a regular singular point of the equation d) $t(t-1)^{2}(t+3)x'' + t^{2}x' - (t^{2} + t - 1)x = 0?$ K2 CO1 (d) none of these (a) 1 (b) 0 (c) -2The equation x'' + x = 0 is e) K2 CO1 (a) oscillatory (b) non-oscillatory (c) neither (a) nor (b) (d) both (a) and (b) **SECTION B** $(3 \times 10 = 30)$ Answer any THREE of the following.

3	Apply the method of variation of parameters to solve $x' + a(t)x = b(t)$ where a and b are known continuous function defined on the interval <i>I</i> .	K3	CO2
4	Let $b_1, b_2,, b_n: I \to \mathbb{R}$ be continuous functions in the <i>n</i> -th order homogeneous differential equation $L(x) = 0$. Let $\varphi_1, \varphi_2,, \varphi_n$ be <i>n</i> linearly independent solutions of $L(x) = 0$ on I. Calculate the Wronskian of $\varphi_1, \varphi_2,, \varphi_n$.	K3	CO2
5	Consider a linear system $x' = A(t)x$ where $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A = \begin{bmatrix} -3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3 \end{bmatrix}$. Show that $\Phi(t) = \begin{bmatrix} e^{-3t} & te^{-3t} & t^2e^{-3t}/2 \\ 0 & e^{-3t} & te^{-3t} \\ 0 & 0 & e^{-3t} \end{bmatrix}$ is a fundamental matrix.	K3	CO2
6	Apply the generating function of Bessel to show $J_n(t) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - t\sin\theta) d\theta$.	K3	CO2

	Prove the Sturm's comparison theorem.	K3	CO2		
SECTION C					
Answer any TWO of the following. (2			x 12.5 = 25)		
8	Point out a general criteria to ensure the Lipschitz condition with supportive examples.	K4	CO3		
9	Analyze the various solutions of second order differential equation with constant coefficients.	K4	CO3		
10	Derive the formula $P_n(t) = \frac{1}{2^n n!} \frac{d^n}{dt^n} (t^2 - 1)^n$ and hence prove that $\int_{-1}^{1} P_n(t) P_n(t) dt = 0$ provided $m \neq n$	K4	CO3		
11	$\int_{-1}^{1} n(t) T_m(t) dt = 0 \text{ provided } m \neq n.$ Explain the Hille Wintner comparison theorem	КЛ	CO3		
11		Ν4	COS		
SECTION D					
Answer any ONE of the following. $(1 \times 15 = 15)$					
12	Let $x' = A(t)x$ be a linear system where $A: I \to M_n(R)$ is continuous. Suppose a matrix Φ satisfies the system, evaluate $(\det \Phi)'$ and assess that if Φ is a fundamental matrix if and only if $\det \Phi \neq 0$.	K5	CO4		
13	Evaluate the linearly independent solutions of Legendre equation.	K5	CO4		
	SECTION E				
Answer any ONE of the following. $(1 \times 20 = 20)^{\circ}$					
14	Prepare the conditions for the existence of a unique solution for the first order equation $x' = f(t,x)$, $x(t_0) = x_0$ and validate for the function $f(t,x) = t - x^2$, $x_0 = 0$.	K6	CO5		
15	Suppose there are two living species which depend for their survival on a common source of food supply. Develop a mathematical model to describe this phenomenon and discuss the usefulness of the model to the extinct of any one of the	K6	CO5		

JJJJJJJ