	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600	034	
K	M.Sc. DEGREE EXAMINATION – MATHEMATICS		
Ž	FIRST SEMESTER – APRIL 2023		
De		2010	
-u	PMT1MC06 – PROBABILITY THEORY AND RANDOM PROCES	SSES	
D.		. 10	• • • • • • • • • • • • • • • • • • •
	ate: 05-05-2023 Dept. No. Max me: 09:00 AM - 12:00 NOON	x. : 100	0 Marks
11 (****			
	SECTION A		
Ans	swer ALL the Questions		
1.		(5 x	1 = 5)
a)	State Markov's inequality.	K1	CO1
b)	With usual notations, recall the partial correlation coefficient between x_1 and x_2	K1	CO1
	with respect to x_3 .		
c)	List down the four properties of a good estimator.	K1	CO1
d)	Describe the critical region in testing the statistical hypothesis.	K1	CO1
e)	Define co-variance stationary in random process.	K1	CO1
2.	· ·	(5 x	1 = 5)
	11tifehish af the fallowing is tors?	K2	CO1
a)	Identify which of the following is true? (i) $E(XY)^2 = E(X^2)E(Y^2)$	K2	COI
	(i) $E(XY)^2 = E(X^2)E(Y^2)$ (ii) $E(XY)^2 \ge E(X^2)E(Y^2)$		
	(iii) $E(XY)^2 \le E(X^2)E(Y^2)$ (iv) None		
b)	(iv) None Tell the person who introduced the concept of rank regression?	K2	CO1
U)	(i) Fisher (ii) Pearson (iii) Spearman (iv) Galton	N2	
c)	If T is consistent estimator of θ , then T^2 is identified as	K2	CO1
-,	(i) Consistent estimator (ii) Inconsistent estimator (iii) Normal estimator		~~.
	(iv) Poisson estimator		
d)	The power of test is estimated using the probability of	K2	CO1
	(i) Type I error (ii) Type II error		
	(iii) Level of significance (iv) None		
e)	If the future values of any sample function can be predicated from the past values,	K2	CO1
	then the random process is identified as		
	(i) Stochastic (ii) Deterministic (iii) Non-deterministic (iv) None		
	SECTION B		
An	swer any THREE of the following	(3 x 1	0 = 30)
3.	State and prove Chebyshev's inequality.	K3	CO2
4.	Ten teams participated in a variety event conducted by Loyola College were	K3	CO2
	ranked by the three judges Vijay, Ajith and Surya in the following order:		
	Ranks by Vijay 1 6 5 10 3 2 4 9 7 8		
	Ranks by Ajith 3 5 8 4 7 10 2 1 6 9		
	Ranks by Surya 6 4 9 8 1 2 3 10 5 7		
	Using rank correlation method, analyse which pair of judges has the nearest		
	approach to common likings in variety event.?		
		_	

	State and prove the sufficient conditions for consistency.	K3	CO2
6.	State and prove Neyman-Pearson Lemma.	K3	CO2
7.	Show that the random process $X(t) = A \cos(\omega t + \theta)$ is wide-sense stationary,	K3	CO2
	where A and ω are constants and θ is uniformly distributed on the interval (0,2 π).		
I	SECTION C		
Ans	swer any TWO of the following (2)	2 x 12.	5 = 25)
8.	State and prove weak law of large numbers. Also, examine whether the law of	K4	CO3
	large numbers holds for the sequence $\{X_k\}$ of independent random variables defined as follows: $P[X_k = \pm 2^k] = 2^{-(2k+1)}$; $P[X_k = 0] = 1 - 2^{-2k}$. Explain minimum variance unbiased estimator for $\gamma(\theta)$, and hence show that it is		
9.	Explain minimum variance unbiased estimator for $\gamma(\theta)$, and hence show that it is	K4	CO3
	always unique.		
0.	Let p be the probability that a coin will fall head in a single toss in order to test	K4	CO3
	$H_0: p = \frac{1}{2}$ against $H_1: p = \frac{3}{4}$. The coin is tossed 5 times and H_0 is rejected, if more		
	than 3 heads are obtained. Calculate the values of α , β , level of significance and		
1	power of the test.	T7 4	~~~
1.	Explain random telegraph signal process and derive any two of its properties.	K4	CO3
	SECTION D		
An	swer any ONE of the following	(1 x 15	5 = 15)
2.	Estimate the Pearson's coefficient of correlation between advertisement cost and	K5	CO4
	sales as per the data given below.Cost in Thousands39656290827525983678		
	Sales in Lakhs 47 53 58 86 62 68 60 91 51 84		
	Interpret the result with business industry.		
3.	Summarize the four classes of random processes with suitable real-life examples.	K5	CO ²
	SECTION E		
Ans	swer any ONE of the following	(1 x 20) = 20)
······	(a) Prepare an estimation for the cost of a project with minimum five parameters		CO
		K6	το.
4.	using the concept of estimation theory. In addition, estimate the maximum	K6	0.
4.	likelihood estimators from the random sampling of normal population	K6	
4.	likelihood estimators from the random sampling of normal population $N(\mu, \sigma^2)$, for (i) μ when σ^2 is known	K6	0.
4.	likelihood estimators from the random sampling of normal population	K6	0.
4.	likelihood estimators from the random sampling of normal population $N(\mu, \sigma^2)$, for (i) μ when σ^2 is known	K6	
4.	likelihood estimators from the random sampling of normal population $N(\mu, \sigma^2)$, for (i) μ when σ^2 is known (ii) σ^2 when μ is known (iii) the simultaneous estimation of μ and σ^2 .	K6	
4.	likelihood estimators from the random sampling of normal population $N(\mu, \sigma^2)$, for (i) μ when σ^2 is known (ii) σ^2 when μ is known (iii) the simultaneous estimation of μ and σ^2 . (12)	K6	
4.	 likelihood estimators from the random sampling of normal population N(μ, σ²), for (i) μ when σ² is known (ii) σ² when μ is known (iii) the simultaneous estimation of μ and σ². (12 marks) (b) Find the nature of the states of the Markov chain with the transition 	K6	
.4.	 likelihood estimators from the random sampling of normal population N(μ, σ²), for (i) μ when σ² is known (ii) the simultaneous estimation of μ and σ². (12 marks) (b) Find the nature of the states of the Markov chain with the transition probability matrix 0 1 2 	K6	
4.	 likelihood estimators from the random sampling of normal population N(μ, σ²), for (i) μ when σ² is known (ii) σ² when μ is known (iii) the simultaneous estimation of μ and σ². (12 marks) (b) Find the nature of the states of the Markov chain with the transition 	K6	
4.	 likelihood estimators from the random sampling of normal population N(μ, σ²), for (i) μ when σ² is known (ii) the simultaneous estimation of μ and σ². (12 marks) (b) Find the nature of the states of the Markov chain with the transition probability matrix 0 1 2 	K6 K6	CO5