LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2023
PMT1MC06 - PROBABILITY THEORY AND RANDOM PROCESSES

Date: 05-05-2023
Time: 09:00 AM - 12:00 NOON

SECTION A			
Answer ALL the Questions			
1.		($5 \times 1=5$)	
a)	State Markov's inequality.	K1	CO1
b)	With usual notations, recall the partial correlation coefficient between x_{1} and x_{2} with respect to x_{3}.	K1	CO1
c)	List down the four properties of a good estimator.	K1	CO1
d)	Describe the critical region in testing the statistical hypothesis.	K1	CO1
e)	Define co-variance stationary in random process.	K1	CO1
2.		($5 \times 1=5$)	
a)	Identify which of the following is true? (i) $\quad E(X Y)^{2}=E\left(X^{2}\right) E\left(Y^{2}\right)$ (ii) $\quad E(X Y)^{2} \geq E\left(X^{2}\right) E\left(Y^{2}\right)$ (iii) $E(X Y)^{2} \leq E\left(X^{2}\right) E\left(Y^{2}\right)$ (iv) None	K2	CO1
b)	Tell the person who introduced the concept of rank regression? (i) Fisher (ii) Pearson (iii) Spearman (iv) Galton	K2	CO1
c)	If T is consistent estimator of θ, then T^{2} is identified as (i) Consistent estimator (ii) Inconsistent estimator (iii) Normal estimator (iv) Poisson estimator	K2	CO1
d)	The power of test is estimated using the probability of (i) Type I error (ii) Type II error (iii) Level of significance (iv) None	K2	CO1
e)	If the future values of any sample function can be predicated from the past values, then the random process is identified as (i) Stochastic (ii) Deterministic (iii) Non-deterministic (iv) None	K2	CO1

SECTION B

Answer any THREE of the following
3. State and prove Chebyshev's inequality.

K 3	CO 2
K 3	CO 2

4. Ten teams participated in a variety event conducted by Loyola College were ranked by the three judges Vijay, Ajith and Surya in the following order:

Ranks by Vijay	1	6	5	10	3	2	4	9	7	8
Ranks by Ajith	3	5	8	4	7	10	2	1	6	9
Ranks by Surya	6	4	9	8	1	2	3	10	5	7

Using rank correlation method, analyse which pair of judges has the nearest approach to common likings in variety event.?

5.	State and prove the sufficient conditions for consistency.											K3	CO2
6.	State and prove Neyman-Pearson Lemma.											K3	CO2
7.	Show that the random process $X(t)=A \cos (\omega t+\theta)$ is wide-sense stationary, where A and ω are constants and θ is uniformly distributed on the interval $(0,2 \pi)$.											K3	CO2
SECTION C													
Answer any TWO of the following												x 12.5 = 25)	
8.	State and prove weak law of large numbers. Also, examine whether the law of large numbers holds for the sequence $\left\{X_{k}\right\}$ of independent random variables defined as follows: $P\left[X_{k}= \pm 2^{k}\right]=2^{-(2 k+1)} ; P\left[X_{k}=0\right]=1-2^{-2 k}$.											K4	CO3
9.	Explain minimum variance unbiased estimator for $\gamma(\theta)$, and hence show that it is always unique.											K4	CO3
10.	Let p be the probability that a coin will fall head in a single toss in order to test $H_{0}: p=\frac{1}{2}$ against $H_{1}: p=\frac{3}{4}$. The coin is tossed 5 times and H_{0} is rejected, if more than 3 heads are obtained. Calculate the values of α, β, level of significance and power of the test.											K4	CO 3
11.	Explain random telegraph signal process and derive any two of its properties.											K4	CO3
SECTION D													
Answer any ONE of the following												$(1 \times 15=15)$	
12.	Estimate the Pearson's coefficient of correlation between advertisement cost and sales as per the data given below. Interpret the result with business industry.											K5	CO 4
13.	Summarize the four classes of random processes with suitable real-life examples.											K5	CO4
SECTION E													
Answer any ONE of the following												$(1 \times 20=20)$	
14.	(a) Prepare an estimation for the cost of a project with minimum five parameters using the concept of estimation theory. In addition, estimate the maximum likelihood estimators from the random sampling of normal population $N\left(\mu, \sigma^{2}\right)$, for (i) μ when σ^{2} is known (ii) σ^{2} when μ is known (iii) the simultaneous estimation of μ and σ^{2}. marks)											K6	CO5
15.	Create a social science-related dataset and explain how regression lines can be used to predict an unknown data.											K6	CO5

