LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2023
PMT2MCO2 - REAL ANALYSIS-II

Date: 02-05-2023
Time: 01:00 PM - 04:00 PM
Dept. No.
Max. : 100 Marks

SECTION A - K1 (CO1)

Answer ALL the questions

1. Answer the following
a) What do you say about the existence of the simultaneous $\operatorname{limit} \lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{2}+y^{6}}, x^{2}+y^{6} \neq 0$.
b) Find the outer measure of a finite set.
c) When do you say that a complex-valued function defined on a measure space is Lebesgue measurable.
d) Let $X=(0,1]$ and define $f: X \rightarrow R$ by $f(x)=x^{-1 / 3}$, show that $f \in L^{1}(X)$ but $f \notin L^{3}(X)$.
e) Give an example showing that Hahn decomposition is not unique.

SECTION A - K2 (CO1)

| | Answer ALL the questions |
| :--- | :--- | :--- |
| 2. | Multiple Choice Questions |
| a) | For what value of k, the function $f(x, y)=\left\{\begin{array}{cc}x^{2}+2 y, & (x, y) \neq(1,2) \\ k, & (x, y)=(1,2)\end{array}\right.$ is continuous at the point | $(1,2)$?

(i) 1
(ii) 2
(iii) 3
(iv) 5
b) For a class of subsets of an arbitrary space X, the smallest σ-algebra of subsets of X is
(i) $\{\varnothing\}$
(ii) $\{X\}$
(iii) $\{\varnothing, X\}$
(iv) $\mathcal{P}(X)$ (power set of X)
c) If f is an integrable function, then
(i) $\left|\int f d x\right| \geq \int|f| d x$.
(ii) f is finite-valued a.e.
(iii) $\int f d x=\lim _{a \rightarrow \infty} \lim _{b \rightarrow-\infty} \int_{b}^{a} f d x \neq \lim _{b \rightarrow-\infty} \lim _{a \rightarrow \infty} \int_{b}^{a} f d x$.
(iv) $\int_{E} f d x=\int \chi_{E} d x$.
d) A measure μ defined on a ring \mathcal{R} is a σ-finite measure, if for every set $E \in \mathcal{R}$,
(i) $E=\cup_{n=1}^{\infty} E_{n}$ for some sequence $\left\{E_{n}\right\}$ such that $E_{n} \in \mathcal{R}$ and $\mu\left(E_{n}\right)=0$ for each n.
(ii) $E=\bigcup_{n=1}^{\infty} E_{n}$ for some sequence $\left\{E_{n}\right\}$ such that $E_{n} \in \mathcal{R}$ and $\mu\left(E_{n}\right)$ is finite for at least one n.
(iii) $E=\cup_{n=1}^{\infty} E_{n}$ for some sequence $\left\{E_{n}\right\}$ such that $E_{n} \in \mathcal{R}$ and $\mu\left(E_{n}\right)$ is finite for each n.
(iv) $E \subset \cup_{n=1}^{\infty} E_{n}$ for some sequence $\left\{E_{n}\right\}$ such that $E_{n} \in \mathcal{R}$ and $\mu\left(E_{n}\right)<\infty$ for each n.
e) For a signed measure v defined on $\llbracket X, S \rrbracket$, which of the following is true?
(i) Values of v need not be extended real numbers.
(ii) $\quad v$ takes both the values $\infty,-\infty$.
(iii) $\quad v$ is a measure.
(iv) $\quad v$ is countably additive for any sequence $\left\{E_{i}\right\}$ of disjoint measurable sets.

Answer any THREE of the following

3. For a map f defined on an open set $E \subset R^{n}$ into R^{m}, show that $f \in \mathcal{C}^{\prime}(E)$ if and only if the partial derivatives $D_{j} f_{i}$ exist and continuous on E for $1 \leq i \leq m, 1 \leq j \leq n$.
4. Establish the four equivalent definitions of a Lebesgue measurable function of an extended realvalued function defined on a measurable set and prove their equivalence.
5. Calculate the value of $\int_{0}^{1 \frac{x^{1 / 3}}{1-x}} \log \frac{1}{x} d x$.
6. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions which is fundamental in measure. Determine the measurable function f such that $f_{n} \xrightarrow{m} f$.
7. If $f \in L^{1}(\mu \times v)$, then show that $f_{x} \in L^{1}(v)$ for almost all $x \in X, f^{y} \in L^{1}(\mu)$ for almost all $y \in Y$, the functions φ, ψ defined by $\varphi(x)=\int_{Y} f_{x} d \nu, \quad \psi(y)=\int_{X} f^{y} d \mu$ are in $L^{1}(\mu)$ and $L^{1}(v)$ respectively and $\int_{X} \varphi d \mu=\int_{X \times Y} f d(\mu \times v)=\int_{Y} \psi d v$.

SECTION C - K4 (CO3)

Answer any TWO of the following

$(2 \times 12.5=25)$
8. Construct a non-measurable set.
9. For a bounded function f defined on a closed finite interval, if $R \int_{a}^{b} f(x) d x$ exists then examine whether the Lebesgue integral of $f(x)$ exists but not conversely.
10. Let μ be a measure on a σ-ring \mathcal{S} and $\overline{\mathcal{S}}$ class of sets of the form $E \Delta N$ for any sets E, N such that $E \in$ \mathcal{S} while N is contained in some set in \mathcal{S} of zero measure. Establish that $\overline{\mathcal{S}}$ is σ-ring and the set function $\bar{\mu}$ defined by $\bar{\mu}(E \Delta N)=\mu(E)$ is a complete measure on $\overline{\mathcal{S}}$.
11. Prove that a signed measure defined on a measurable space $\llbracket X, \mathcal{S} \rrbracket$ can be decomposed into difference of two measures and such decomposition is unique.

SECTION D - K5 (CO4)

Answer any ONE of the following

$(1 \times 15=15)$
12. Evaluate the Hausdorff dimension of the Cantor-like set P_{ξ}.
13. Let v be a signed measure on a measurable space $\llbracket X, \mathcal{S} \rrbracket$ and $v(E)>0$ for $E \in \mathcal{S}$. Verify whether there exists a positive set A with respect to v such that $A \subseteq E$ and $v(A)>0$.

SECTION E - K6 (CO5)

Answer any ONE of the following
14. Let f be a \mathcal{C}^{\prime}-mapping of an open set $E \subset R^{n+m}$ into R^{n} such that $f(a, b)=0$ for a point $(a, b) \in E$ and $A=f^{\prime}(a, b)$. Assume that A_{x} is invertible. Then there exist open sets $U \subset R^{n+m}$ and $W \subset R^{m}$, with $(a, b) \in U$ and $b \in W$, such that:
(i) To every $y \in W$ there is a unique x such that $(x, y) \in U$ and $f(x, y)=0$.
(ii) If x is defined by $g(y)$, then g is a \mathcal{C}^{\prime}-mapping of W into R^{n},

$$
g(b)=a, f(g(y), y)=0 \text { for } y \in W \text { and } g^{\prime}(b)=-\left(A_{x}\right)^{-1} A_{y} .
$$

Justify the statement.

Use the statement to conclude that there exists a continuously differentiable mapping from the
neighbourhood W of (1,1) into R^{2} such that $g(b)=a$ and find $g^{\prime}(b)$, for a continuous differentiable mapping f of an open set $E \subset R^{5}$ into R^{3} defined by

$$
\begin{gathered}
f_{1}\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right)=y_{1} x_{1}+y_{1} x_{2}+y_{2} x_{3}-3, \\
f_{2}\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right)=y_{1} x_{1}^{2}+y_{1} x_{2}^{2}+y_{2} x_{3}^{2}-5 \\
f_{3}\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}\right)=y_{1} x_{1}^{3}+y_{1} x_{2}^{3}+y_{2} x_{3}^{3}-9
\end{gathered}
$$

and $a=(0,1,2), b=(1,1)$.
15. Validate the statement: For a sequence $\left\{f_{n}\right\}_{n \geq 1}$, of non-negative measurable functions, $\liminf \int f_{n} d x \geq \int \liminf f_{n} d x$.
Give your comments with an example that non-negative condition of all f_{n} is necessary for the above statement.
\&\&\&\&\&\&\&\&\&\&

