LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2023

PMT2MCO3 - PARTIAL DIFFERENTIAL EQUATIONS

Date: 04-05-2023
Time: 01:00 PM - 04:00 PM

SECTION A - K1 (CO1)

Answer ALL the questions

1. Answer the following
a) When do you say that the linear differential operator $F\left(D, D^{\prime}\right)$ is reducible?
b) Write the Laplace equation in polar coordinates.
c) State the maximum-minimum principle for heat equation.
d) Write down the one-dimensional wave equation.
e) What is the method of images?

SECTION A - K2 (CO1)

Answer ALL the questions

(5 x $1=5$)
2. Choose the correct answer
a) The auxiliary equation of partial differential equation $P p+Q q=R$ is
(a) $\frac{d x}{R}=\frac{d y}{Q}=\frac{d z}{P}$
(b) $\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}$
(c) $\frac{d x}{Q}=\frac{d y}{R}=\frac{d z}{P}$
(d) none
b) The boundary conditions $u(x, b)=0, u(a, y)=0, u(0, y)=0, u(x, 0)=f(x)$ due to
(a) Dirichlet
(b) Neumann
(c) Euler
(d) Gauss
c) The Fourier heat conduction equation
(a) $\frac{\partial T}{\partial t}=\frac{1}{\alpha} \nabla^{2} T$
(b) $\frac{\partial T}{\partial t}=\alpha \nabla^{2} T$
(c) $\frac{\partial^{2} T}{\partial t^{2}}=\frac{1}{\alpha} \nabla^{2} T$
(d) $\frac{\partial^{2} T}{\partial t^{2}}=\alpha \nabla^{2} T$
d) Television and radio waves are the examples of
(a) mechanical waves
(b) transverse waves
(c) longitudinal waves
(d) electromagnetic waves
e) The value of the Green function on the boundary
(a) 0
(b) 1
(c) -1
(d) none

SECTION B - K3 (CO2)

Answer any THREE of the following

($\mathbf{3} \times 10=30$)
3.

Apply the Lagrange's method to solve the equation $\left|\begin{array}{ccc}x & y & z \\ \alpha & \beta & \gamma \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & -1\end{array}\right|=0$.
4. Solve the equation $\left(D^{2}+2 D D^{\prime}+D^{\prime 2}-2 D-2 D^{\prime}\right) u=\sin (x+2 y)$.
5. Use the separation of variables method to find the solution of Laplace equation in cylindrical coordinates.
6. Prove that the solution to the wave equation is unique.
7. Show that Green's function has the symmetric property.
8. Classify and solve the following equation: $u_{x x}-2 \sin x u_{x y}-\cos ^{2} x u_{y y}-\cos x u_{y}=0$.
9. Consider the equation $\nabla^{2} u=0$ over a rectangle of length a and breadth b under the boundary conditions $u_{x}(0, y)=0, u_{x}(a, y)=0, u_{y}(x, 0)=0, u_{y}(x, b)=f(x)$. Analyze the solution $u(x, y)$.
10. Compare the solutions of the one-dimensional wave equation by canonical reduction and D'Alembert's method.
11. Identify the Green's function for the Dirichlet's boundary value problem $\nabla^{2} u=f$ valid in certain region \mathcal{R} subject to the boundary condition $u=g$ on $\partial \mathcal{R}$.

SECTION D - K5 (CO4)

Answer any ONE of the following

($1 \times 15=15$)
12. Consider the equation $\nabla^{2} u=0$ over a circle of radius a. Evaluate u under the boundary condition $u(a, \theta)=f(\theta)$.
13. Prove that the following partial differential equations $x p-y q=x$ and $x^{2} p+q=x z$ are compatible and determine their common solution.

SECTION E - K6 (CO5)

Answer any ONE of the following

($1 \times 20=20$)
14. The ends A and B of a rod 10 cm in length are kept at temperature $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until the steady state condition prevails. Suddenly the temperature at the end A is increased to $20^{\circ} \mathrm{C}$ and the end B is decreased to $60^{\circ} \mathrm{C}$. Formulate the temperature distribution in the rod at time t.
15. Let a thin homogeneous string that is perfectly flexible under uniform tension lie in its equilibrium position along the x -axis. The string is pulled aside a short distance and released. If no external forces are present, develop the subsequent motion $u(x, t)$ of the string under the conditions $u(0, t)=$ $u(2, t)=0, u(x, 0)=\sin ^{3} \pi x / 2, u_{t}(x, 0)=0$.

