LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
M.Sc. DEGREE EXAMINATION – MATHEMATICS SECOND SEMESTER – APRIL 2023			
			PMT2MC03 – PARTIAL DIFFERENTIAL EQUATIONS
Γ	Date: 04-05-2023 Dept. No. Max. : 100 Marks		
Т	Yime: 01:00 PM - 04:00 PM		
SECTION A – K1 (CO1)			
	Answer ALL the questions(5 x 1 = 5)		
1.	Answer the following		
a)	When do you say that the linear differential operator $F(D, D')$ is reducible?		
b)	Write the Laplace equation in polar coordinates.		
c)	State the maximum-minimum principle for heat equation.		
a)	What is the method of image?		
ej	what is the method of images?		
	SECTION A – K2 (CO1)		
	Answer ALL the questions(5 x 1 = 5)		
2.	Choose the correct answer		
a)	The auxiliary equation of partial differential equation $Pp + Qq = R$ is (a) $\frac{dx}{R} = \frac{dy}{Q} = \frac{dz}{P}$ (b) $\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ (c) $\frac{dx}{Q} = \frac{dy}{R} = \frac{dz}{P}$ (d) none		
b)	The boundary conditions $u(x, b) = 0$, $u(a, y) = 0$, $u(0, y) = 0$, $u(x, 0) = f(x)$ due to (a) Dirichlet (b) Neumann (c) Euler (d) Gauss		
c)	The Fourier heat conduction equation		
	(a) $\frac{\partial T}{\partial t} = \frac{1}{\alpha} \nabla^2 T$ (b) $\frac{\partial T}{\partial t} = \alpha \nabla^2 T$ (c) $\frac{\partial^2 T}{\partial t^2} = \frac{1}{\alpha} \nabla^2 T$ (d) $\frac{\partial^2 T}{\partial t^2} = \alpha \nabla^2 T$		
d)	Television and radio waves are the examples of(a) mechanical waves(b) transverse waves(c) longitudinal waves(d) electromagnetic waves		
e)	The value of the Green function on the boundary (a) 0 (b) 1 (c) -1 (d) none		
SECTION B – K3 (CO2)			
	Answer any THREE of the following(3 x 10 = 30)		
3.	$\begin{vmatrix} x & y & z \\ c & 0 & y \end{vmatrix}$		
	Apply the Lagrange's method to solve the equation $\begin{vmatrix} \alpha & \beta & \gamma \\ \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} & -1 \end{vmatrix} = 0.$		
4.	Solve the equation $(D^2 + 2DD' + D'^2 - 2D - 2D')u = \sin(x + 2y)$.		
5.	Use the separation of variables method to find the solution of Laplace equation in cylindrical coordinates.		
6.	Prove that the solution to the wave equation is unique.		
7.	Show that Green's function has the symmetric property.		

SECTION C – K4 (CO3)			
	Answer any TWO of the following (2 x 12.5 = 25)		
8.	Classify and solve the following equation:		
	$u_{xx} - 2sinx u_{xy} - cos^2 x u_{yy} - cos x u_y = 0.$		
9.	Consider the equation $\nabla^2 u = 0$ over a rectangle of length <i>a</i> and breadth <i>b</i> under the boundary		
	conditions $u_x(0, y) = 0$, $u_x(a, y) = 0$, $u_y(x, 0) = 0$, $u_y(x, b) = f(x)$. Analyze the solution $u(x, y)$.		
10.	Compare the solutions of the one-dimensional wave equation by canonical reduction and		
	D'Alembert's method.		
11.	Identify the Green's function for the Dirichlet's boundary value problem $\nabla^2 u = f$ valid in certain		
	region \mathcal{R} subject to the boundary condition $u = g$ on $\partial \mathcal{R}$.		
	SECTION D – K5 (CO4)		
	Answer any ONE of the following(1 x 15 = 15)		
12.	Consider the equation $\nabla^2 u = 0$ over a circle of radius <i>a</i> . Evaluate <i>u</i> under the boundary condition		
	$u(a,\theta) = f(\theta).$		
13.	Prove that the following partial differential equations $xp - yq = x$ and $x^2p + q = xz$ are compatible		
	and determine their common solution. SECTION E $V(CO5)$		
	SECTION E – K0 (CO5) $(1 \times 20 - 20)$		
14	Answer any ONE of the following $(1 \times 20 - 20)$ The ends 4 and B of a rod 10 cm in length are kent at temperature 0°C and 100°C until the steady.		
17.	state condition prevails. Suddenly the temperature at the end 4 is increased to 20° C and the end B is		
	decreased to 60° C. Formulate the temperature distribution in the rod at time t		
15.	Let a thin homogeneous string that is perfectly flexible under uniform tension lie in its equilibrium		
_	position along the x-axis. The string is pulled aside a short distance and released. If no external forces		
	are present, develop the subsequent motion $u(x,t)$ of the string under the conditions $u(0,t) =$		
	$u(2,t) = 0, u(x,0) = sin^3 \pi x/2, u_t(x,0) = 0.$		