LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - APRIL 2023
PMT2MC04 - COMPLEX ANALYSIS

Date: 06-05-2023
Time: 01:00 PM - 04:00 PM
Dept. No. \square Max. : 100 Marks

SECTION A - K1 (CO1)

Answer ALL the questions

($5 \times 1=5$)

1. Answer the following
a) What is the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
b) Define zeros of an analytic function $f(z)$ defined on an open set G of multiplicity $m \geq 1$.
c) What do you mean by a closed rectifiable curve γ_{0} in G homotopic to zero?
d) Define a convex set with an example.
e) State Functional equation.

SECTION A - K2 (CO1)

Answer ALL the questions

[^0](iii) $R=\lim \sup \left|a_{n}\right|^{n}$
(iv)
c) If $f: G \rightarrow C$ is an analytic function and γ is a closed rectifiable curve such that $\gamma \sim 0$ then $\int_{\gamma} f=$
(i) nonzero
(ii) 2
(iii) 1
(iv) 0
d) $E_{0}(z)=$
(i)1
(ii) $1-z$
(iii) $1+z$
(iv) $1+2 z$
e) \quad For $z \neq 0,-1, \ldots \infty$
(i) $\gamma(z)=\lim _{n \rightarrow \infty} \frac{(n-1)!n^{z}}{z(z+1)(z+2) \ldots(z+n)}$
(ii) $\gamma(z)=\lim _{n \rightarrow \infty} \frac{(n)!n^{z}}{z(z+1)(z+2) \ldots(z+n)}$
(iii) $\gamma(z)=\lim _{n \rightarrow \infty} \frac{(n-1)!n^{z}}{z(z+1)(z+2) \ldots(z+n+1)}$
(iv) $\gamma(z)=\lim _{n \rightarrow \infty} \frac{(n)!n^{z}}{(z+1)(z+2) \ldots(z+n)}$

SECTION B - K3 (CO2)

Answer any THREE of the following

$(3 \times 10=30)$
3. Prove $\int_{0}^{2 \pi} \frac{e^{i s}}{e^{i s}-z} d s=2 \pi$ if $|z|<1$.
4. State and prove the fundamental theorem of algebra.
5. Let $\operatorname{Re} z_{n}>-1$. Prove that the series $\sum \log \left(1+z_{n}\right)$ converges absolutely if and only if the series $\sum z_{n}$ converges absolutely.
6. Prove that a differentiable function on $[a, b]$ is convex if and only if f^{\prime} is increasing.
7. State and prove the Gauss's formula.
8. State and prove Cauchy's integral formula and apply to evaluate $\int_{\gamma} \frac{1}{z-a} d z$ where $\gamma=a+r e^{i t}, 0 \leq$ $t \leq 2 \pi$.
9. State and prove Morera's theorem.
10. Prove Schwarz's lemma and apply it to prove the following:

Let $g: D \rightarrow D$ be analytic and $g(0)=0$. Let $h(z)=\frac{g(z)}{z}, z \neq 0$
(i) $h(z)$ is analytic in D .
(ii) $h(D) \subseteq \bar{D}$
(iii) $|g(1 / 2)| \leq 1 / 2$
11. If γ_{0} and γ_{1} are two closed rectifiable curves in G such that $\gamma_{0} \sim \gamma_{1}$ explain how $\int_{\gamma_{0}} f=\int_{\gamma_{1}} f$.

> SECTION D - K5 (CO4)

Answer any ONE of the following

($1 \times 15=15$)
12. Let f and g be analytic on a region G. Prove that $f \equiv g$ if and only if $\{z \in C: f(z)=g(z)\}$ has a limit point in G. If $f: C \rightarrow C$ is an entire function and $g(z)$ is defined by $g(z)=f(z)-f(z+1)$, $f\left(\frac{1}{n}\right)=0$, and $f\left(\frac{1}{n}\right)=f\left(\frac{1}{n}+1\right)$, for all positive integer value of n, Can we say that f and g are constant? Justify.
13. Prove the weierstrass factorization theorem and evaluate the factorization of sine function.

> SECTION E - K6 (CO5)

Answer any ONE of the following
($1 \times 20=20$)
14. Is there an analytic function f on $B(0 ; 1)$ such that $|f(z)|<1$ for $|z|<1, f(0)=1 / 2$ and $f^{\prime}(0)=$ $3 / 4$? If so find such an f. Is it unique? Prove the supporting result.

Let G be a simply connected region which is not the plane and let $a \in G$. Construct a unique analytic function $f: G \rightarrow C$ having the properties:
(a) $f(a)=0$ and $f^{\prime}(a)>0$
(b) f is one-one
(c) $f(G)=\{z:|z|<1\}$

\$\$\$\$\$\$

[^0]: 2. Choose the correct answer for the following
 a) The radius of convergence of the power series $\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ is
 (i)) $\frac{1}{R}=\lim \sup \left|a_{n}\right|^{\frac{1}{n}}$
 (ii) $R=\lim \sup \left|a_{n}\right|^{\frac{1}{n}}$
 $\frac{1}{R}=\lim \sup \left|a_{n}\right|^{n}$
 b) If $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots a_{0}$ then $\lim _{n \rightarrow \infty} p(z)=$
 (i) 0
 (ii) 1
 (iii) ∞
 (iv) n
