	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
Ż	M.Sc. DEGREE EXAMINATION – MATHEMATICS	
	SECOND SEMESTER – APRIL 2023	
E.	PMT2MC04 – COMPLEX ANALYSIS	
Ι	Date: 06-05-2023 Dept. No. Max. : 100 Marks	
1	Time: 01:00 PM - 04:00 PM	
SECTION A – K1 (CO1)		
	Answer ALL the questions(5 x 1 = 5)	
1.	Answer the following	
a)	What is the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$.	
b)	Define zeros of an analytic function $f(z)$ defined on an open set G of multiplicity $m \ge 1$.	
c)	What do you mean by a closed rectifiable curve γ_0 in <i>G</i> homotopic to zero?	
d)	Define a convex set with an example.	
e)	State Functional equation.	
SECTION A – K2 (CO1)		
	Answer ALL the questions $(5 \times 1 = 5)$	
2.	Choose the correct answer for the following	
a)	The radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (z-a)^n$ is	
	(i) $\frac{1}{R} = \limsup a_n ^{\overline{n}}$ (ii) $R = \limsup a_n ^{\overline{n}}$ (iii) $R = \limsup a_n ^{\overline{n}}$ (iv)	
	$\frac{1}{R} = \lim \sup a_n ^n$	
b)	If $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$ then $\lim_{n \to \infty} p(z) =$ (i) 0 (ii) 1 (iii) ∞ (iv) n	
c)	If $f: G \to C$ is an analytic function and γ is a closed rectifiable curve such that $\gamma \sim 0$ then $\int_{C} f = 0$	
	(i) nonzero (ii) 2 (iii) 1 (iv) 0	
d)	$E_0(z) =$	
-)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
<i>e)</i>	For $Z \neq 0, -1, \dots \infty$ (i) $u(-)$ line $(n-1)!n^Z$ (ii) $u(-)$ line $(n)!n^Z$	
	(1) $\gamma(z) = \lim_{n \to \infty} \frac{1}{z(z+1)(z+2)\dots(z+n)}$ (1) $\gamma(z) = \lim_{n \to \infty} \frac{1}{z(z+1)(z+2)\dots(z+n)}$	
	(iii) $\gamma(z) = \lim_{n \to \infty} \frac{(n-1)!n^2}{z(z+1)(z+2)\dots(z+n+1)}$ (iv) $\gamma(z) = \lim_{n \to \infty} \frac{(n)!n^2}{(z+1)(z+2)\dots(z+n)}$	
	SECTION B – K3 (CO2)	
	Answer any THREE of the following(3 x 10 = 30)	
3.	Prove $\int_{0}^{2\pi} \frac{e^{is}}{e^{is}-z} ds = 2\pi i f z < 1.$	
4.	State and prove the fundamental theorem of algebra.	
5.	Let $Rez_n > -1$. Prove that the series $\sum log(1 + z_n)$ converges absolutely if and only if the series	
	$\sum z_n$ converges absolutely.	
6.	Prove that a differentiable function on $[a, b]$ is convex if and only if f' is increasing.	
7.	State and prove the Gauss's formula.	
Í		

Answer any TWO of the following(2 x 12.5 = 2)8.State and prove Cauchy's integral formula and apply to evaluate $\int_{\gamma} \frac{1}{z-a} dz$ where $\gamma = a + re^{it}$, 0	5)	
8. State and prove Cauchy's integral formula and apply to evaluate $\int_{\gamma} \frac{1}{z-a} dz$ where $\gamma = a + re^{it}$, 0		
	1	
$\frac{l \leq 2\pi}{2}$ 9 State and prove Morera's theorem		
 State and prove Morera's theorem. Prove Schwarz's lemma and apply it to prove the following: 		
Let $a: D \to D$ be analytic and $a(0) = 0$. Let $h(z) = \frac{g(z)}{z \neq 0}$		
Let $g: D \to D$ be analytic and $g(0) = 0$. Let $n(2) = \frac{1}{2}, 2 \neq 0$ = $a'(0), z = 0$		
(i) $h(z)$ is analytic in D.		
(ii) $h(D) \subseteq \overline{D}$		
$(iii) g(1/2) \le 1/2$		
11. If γ_0 and γ_1 are two closed rectifiable curves in G such that $\gamma_0 \sim \gamma_1$ explain how $\int_{\gamma_0} f = \int_{\gamma_1} f$.		
SECTION D – K5 (CO4)		
Answer any ONE of the following(1 x 15 = 1	5)	
12. Let <i>f</i> and <i>g</i> be analytic on a region <i>G</i> . Prove that $f \equiv g$ if and only if $\{z \in C : f(z) = g(z)\}$ has a limit point in <i>G</i> . If $f: C \to C$ is an entire function and $g(z)$ is defined by $g(z) = f(z) - f(z + 1)$,		
$f\left(\frac{1}{n}\right) = 0$, and $f\left(\frac{1}{n}\right) = f\left(\frac{1}{n} + 1\right)$, for all positive integer value of n, Can we say that f and g are		
13 Prove the weierstrass factorization theorem and evaluate the factorization of sine function		
SECTION E – K6 (CO5)		
Answer any ONE of the following $(1 \times 20 = 2)$))	
14. Is there an analytic function f on $B(0; 1)$ such that $ f(z) < 1$ for $ z < 1$, $f(0) = 1/2$ and $f'(0) = 3/4$? If so find such an f . Is it unique? Prove the supporting result.	=	
15. Let G be a simply connected region which is not the plane and let $a \in G$. Construct a unique analy function $f: G \to C$ having the properties:	tic	
(a)f(a) = 0 and f'(a) > 0		
(b) f is one-one		
(c) $f(G) = \{z : z < 1\}$		
\$\$\$\$\$\$		