FIRST SEMESTER - NOVEMBER 2016
16PMT1MCO1/MT 1815 - LINEAR ALGEBRA

Date: 02-11-2016
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

Answer ALL the questions:

I. a. i) Find the minimal polynomial for the matrix

$$
A=\left(\begin{array}{lll}
3 & -2 & 2 \\
4 & -4 & 6 \\
2 & -3 & 5
\end{array}\right) .
$$

(OR)
ii) Let T be a linear operator on a finite dimensional space V and let c be a scalar. Prove that the following statements are equivalent.

1. c is a characteristic value of T.
2. The operator ($T-c l$) is singular.
3. $\operatorname{det}(T-c l)=0$.
b. i) Let T be a linear operator on a finite dimensional space V and $\mathrm{c}_{1}, \ldots \mathrm{c}_{\mathrm{k}}$ be the distinct characteristic values of T . Let W_{i} be the null space of $\left(\mathrm{T}-\mathrm{c}_{\mathrm{i}} \mathrm{I}\right)$. Prove that the following are equivalent.
4. T is diagonalizable
5. The characteristic polynomial for T is $f=\left(x-c_{1}\right)^{d 1} \ldots\left(x-c_{k}\right)^{d_{k}}$ and $\operatorname{dim} W_{i}=d_{i}, i=1, \ldots, k$. 3. $\operatorname{dim} \mathrm{W}_{1}+\ldots \operatorname{dim} \mathrm{W}_{\mathrm{k}}=\operatorname{dim} \mathrm{V}$.
(OR)
ii) State and prove Cayley - Hamilton Theorem.
II. a. i) Let V be a finite-dimensional vector space. Let $\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{K}}$ be subspaces of V and let $\mathrm{W}=\mathrm{W}_{1}+\ldots+\mathrm{W}_{\mathrm{K}}$. The following are equivalent.
a) $\mathrm{W}_{1}, \ldots, \mathrm{~W}_{\mathrm{K}}$ are independent.
b) For each $\mathrm{j}, 2 \leq \mathrm{i} \leq \mathrm{k}$, we have $\mathrm{Wj} \cap\left(\mathrm{W}_{1}+\ldots+\mathrm{W}_{\mathrm{j}-1}\right)=\{0\}$.
(OR)
ii) Let W be an invariant subspace for T. Then prove that the minimal polynomial for T_{w} divides the minimal polynomial for T.
b. i) State and prove Primary Decomposition theorem.
(OR)
(15)
ii) Let T be a linear operator on a finite dimensional space V. If T is diagonalizable and if c_{1}, \ldots, c_{k} are the distinct characteristic values of T, then prove that there exist linear operators E_{1}, \ldots, E_{k} on V such that

$$
\text { 1. } T=c_{1} E_{1}+\ldots+c_{k} E_{k} \quad \text { 2. } I=E_{1}+\ldots+E_{k} \quad \text { 3. } E_{i} E_{j}=0, i \neq j \quad \text { 4. Each } E_{i} \text { is a projection }
$$

5. The range of E_{i} is the characteristic space for T associated with c_{i}.
III. a. i) If \boldsymbol{B} is an ordered basis for $\mathrm{W}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{k}$, then prove that the sequences $\boldsymbol{\mathcal { B }}=\left(\boldsymbol{B}_{1} \ldots \boldsymbol{B}_{\mathrm{k}}\right)$ is an ordered basis for W .
(OR)
ii) Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V . Then T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.
ii) If W is $\mathrm{T}-$ admissible then, there exists a vector $\alpha \in v$ such that $W \cap Z(\alpha ; T)=\{0\}$.
iii) Let T be a linear operator on a finite-dimensional vector space V . Let p and f be the minimal and characteristic polynomials for T, respectively.
(1) p divides f.
(2) p and f have the same prime factors, except for multiplicities.
(3) If $p=f_{1}^{r_{1}} \ldots . f_{k}^{r_{k}}$

In the prime factorization of p , then $f=f_{1}^{d_{1}} \ldots . f_{k}^{d_{k}}$ where d_{i} is the nullity of $\mathrm{f}_{\mathrm{i}}(\mathrm{T})^{r_{i}}$ divided by the degree of f_{i}.
IV. a. i) Let V be a complex vector space and f be a form on V such that $\mathrm{f}(\alpha, \alpha)$ is real for every α, then f is Hermitian.

(OR)

ii) Let T be a linear operator on a complex finite dimensional inner product space V. Then prove that T is self-adjoint if and only if $(T \alpha / \alpha)$ is real for every α in V.
b. i) Let V be a finite-dimensional inner product space and f a form on V . Then there is a unique linear operator T on V such that $f(\alpha, \beta)=(T \alpha \mid \beta)$ for all α, β in V, and the map $f \rightarrow T$ is an isomorphism of the space of forms onto $\mathrm{L}(\mathrm{V}, \mathrm{V})$.
ii) For any linear operator T on a finite-dimensional inner product space V , there exists a unique linear T^{*} on V such that $(T \alpha \mid \beta)=\left(\alpha \mid T^{*} \beta\right)$ for all α, β in V.

(OR)

iii) Let F be the field of real numbers or the field of complex numbers. Let A be an nx n matrix over F. Show that the function g defined by $g(X, Y)=Y^{*} A X$ is a positive form on the space $\mathrm{F}^{\mathrm{nx} 1}$ if and only if there exists an invertible $\mathrm{n} \mathrm{x} n$ matrix P with entries in F such that $\mathrm{A}=\mathrm{P} * \mathrm{P}$.
iv) State and prove Principal Axis Theorem.
V. a. i) Define Quadratic form, Bilinear form, symmetric bilinear form and prove that

$$
\begin{equation*}
f(\alpha, \beta)=\frac{1}{4} q(\alpha+\beta)-\frac{1}{4} q(\alpha-\beta) \tag{8}
\end{equation*}
$$

(OR)
ii) Let V be a finite dimensional vector space over a field of characteristic zero and let f be symmetric bilinear form on V . Then prove that there is an ordered basis for V in which f is represented by a diagonal matrix.
b. i) Let V be an n -dimensional vector space over the field of real numbers, and let f be a symmetric bilinear form on V which has rank r . Then there is and ordered basis $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ for V in which the matrix of f is diagonal and such that

$$
\begin{align*}
& f\left(\beta_{j}, \beta_{j}\right)= \pm 1, \quad j=1, \ldots, r \text {. Also show that the number of basis vectors } \beta_{j} \text { for which } \\
& f\left(\beta_{j}, \beta_{j}\right)=1 \text { is independent of the choice of basis. } \tag{7}
\end{align*}
$$

ii) Let V be a finite-dimensional vector space over the field of complex numbers. Let f be a symmetric bilinear form on V which has rank r . Then prove that there is an ordered basis
$\mathscr{B}=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ for V such that: (1) the matrix of f in the ordered basis \mathfrak{B} is diagonal;
(2) $f\left(\beta_{j}, \beta_{j}\right)=\left\{\begin{array}{l}1, j=1, \ldots, r \\ 0, j>r \ldots \ldots\end{array}\right.$
iii) Let V and W be the finite dimensional inner product space over the same field having the same dimension. If T is a linear transformation from $\mathrm{V} \rightarrow \mathrm{W}$, then the following are equivalent.
(i) T preserves inner products.
(ii) T is an isomorphism.
(iii) T carries every orthonormal basis of V onto an orthonormal basis for W .
(iv) T carries some orthonormal basis of V onto an orthonormal basis for W .

