M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2016

16PMT1MC02-REAL ANALYSIS

Date: 04-11-2016 \square Max. : 100 Marks

Answer all Questions. All questions carry equal marks.

1. (a) (i) Suppose f is a real function defined on R which satisfies
$\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0$, for every $x \in R$. Does this imply that f is continuous?

(OR)

(ii) Suppose f is a continuous mapping of a compact metric space X into a metric space. Then prove that $f(X)$ is compact.
(b) (i) Let A and B be disjoint nonempty closed subsets in a metric space X and define $f(p)=\frac{\rho_{A}(p)}{\rho_{A}(p)+\rho_{B}(p)}, p \in X$, where $\rho_{E}(x)=\inf _{z \in E} d(x, z)$. Show that f is a continuous function on X whose range lies in $[0,1]$ and $f^{-1}(\{0\})=A$ and $f^{-1}(\{1\})=B$. (9 marks)
(ii)Prove that for any monotonic function on (a,b), the set of points at which f is discontinuous is atmost countable.
(OR)
(c) (i) Suppose f is a continuous mapping of $[0,1]$ into itself. Prove that $\mathrm{f}(\mathrm{x})=\mathrm{x}$ for atleast one $x \in[0,1]$.
(ii) Assume that f is a continuous real function defined in (a, b) such that $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}, \forall x, y \in(a, b)$. Then prove that f is convex.
2. (a) (i) If f is continuous on $[a, b]$, then prove that $f \in \mathscr{R}(\alpha)$.
(OR)
(ii) If $\mathrm{f}_{1} \in \mathfrak{R}(\alpha)$ and $\mathrm{f}_{2} \in \mathfrak{R}(\alpha)$ on $[a, b]$, then prove that $\mathrm{f}_{1}+\mathrm{f}_{2} \in \mathfrak{R}(\alpha)$.
(b) (i) Define a refinement of a partition P . If P^{*} is a refinement of P then prove that $L(P, f, \propto) \leq$ $L\left(P^{*}, f, \propto\right)$ and $U\left(P^{*}, f, \propto\right) \leq U(P, f, \propto)$.
(5 marks)
(ii) State and prove a necessary condition and sufficient condition for a bounded real valued function to be a Riemann-Steiltjes integrable.
(10 marks)
(OR)
(c) (i) Suppose x increases on [a, b], $a \leq x_{0} \leq b, \propto$ is continuous at $x_{0}, \mathrm{f}\left(x_{0}\right)=1$ and $\mathrm{f}(\mathrm{x})=0$ if $x \neq$ x_{0}. Prove that $f \in R(\alpha)$ and $\int_{a}^{b} f d \alpha=0$.
(5 marks)
(ii) Let $f \in \mathcal{R}(\alpha)$ on [a, b], $m \leq f \leq M, \varphi$ be continuous on [m,M] and $h(x)=\varphi(f(x))$ on $[\mathrm{a}, \mathrm{b}]$. Then prove that $h \in \Re(\alpha)$
(10 marks)
3. (a) (i) Prove that $\lim _{n \rightarrow \infty} f_{n}^{\prime}(\mathrm{C}) \neq f^{\prime}(0)$ where $f_{n}(x)=\frac{\sin n x}{\sqrt{n}}, x$ real, $n=1,2 \ldots$

(OR)

(ii) Find for what values of x , the given series $\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x}$ converges absolutely?
(5 marks)
(b) (i) Prove that for $f_{n}(x)=\frac{x^{2}}{\left(1+x^{2}\right)^{n}}, x$ real, $n=0,1,2 \ldots$, the following:

1. $f_{n}(x)$ are continuous functions for any x and n .
2. $\sum_{n=0}^{\infty} f_{n}(x)$ is a convergent series and the limit of the sum is continuous.
(ii) If $\left\{f_{n}\right\}$ is a sequence of continuous functions on a set E and if $f_{n} \rightarrow f$ uniformly on E , then prove that f is continuous on E .
(5+ 10 marks)

(OR)

(c) If $\left\{f_{n}\right\}$ is a sequence of differentiable functions on [a, b] such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for $x_{0} \in[a, b]$ and $\left\{f_{n}^{\prime}\right\}$ converges uniformly on $[\mathrm{a}, \mathrm{b}]$, then prove that $\left\{f_{n}\right\}$ converges uniformly on $[\mathrm{a}, \mathrm{b}]$ to a function f and $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)$.
(15 marks)
4. (a) (i) State and prove the Bessel's Inequality and hence derive the Parseval's formula.
(OR)
(ii) Let $S=\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots\right\}$, where $\varphi_{0}(x)=\frac{1}{\sqrt{2 \pi}}, \varphi_{2 n-1}(x)=\frac{\cos n x}{\sqrt{\pi}}$ and $\varphi_{2 n}(x)=\frac{\sin n x}{\sqrt{\pi}}$, for $\mathrm{n}=1,2 \ldots$. Prove that S is orthnormal on any interval of length 2π. (5 marks)
(b) (i) State and prove Riesz-Fischer theorem.
(ii) State and prove Riemann-Lebesgue lemma.
(8+7 Marks)

(OR)

(c) (i) Define Dirichlet's kernel and prove that $\frac{1}{2}+\sum_{k=1}^{n} \cos k x=\frac{\sin (2 n+1)^{\frac{x}{2}}}{2 \sin \frac{x}{2}}, x \neq 2 m \pi$
(ii) If $f \in L[0,2 \pi]$, f is periodic with period 2π and $\left\{s_{n}\right\}$ is a sequence of partial sums of Fourier series generated by f, $s_{n}=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right), n=1,2 \ldots$ then prove that

$$
s_{n}(x)=\frac{2}{\pi} \int_{0}^{\pi} \frac{f(x+t)+f(x-t)}{2} D_{n}(t) d t
$$

(5+10 marks)
5. (a) (i) If $A, B, C \in L\left(R^{n}, R^{m}\right)$ and c is a scalar then prove the following:

1. $\|A+B\| \leq\|\mathrm{A}\|+\|\mathrm{B}\|$
2. $\|c A\|=|c|\|A\|$
3. $\|A-C\| \leq\|A-B\|+\|B-C\|$.

(OR)

(ii) Suppose X is a complete metric space and ϕ is a contraction of X into X . Prove that there exist one and only one $\mathrm{x} \in \mathrm{X}$ such that $\phi(\mathrm{x})=\mathrm{x}$.
(b) State and prove the inverse function theorem.
(OR)
(c) State and prove the implicit function theorem.
(15 marks)

