LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2016
16PMT1MCO3 / MT 1817 - ORDINARY DIFFERENTIAL EQUATIONS

Date: 07-11-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Answer all questions. Each question carries 20 marks.

1. (a) Determine whether the given sets of functions are linearly dependent or independent. (i) e^{x}, e^{-x} (ii) $1, x, x^{2}, \ldots, x^{n}$, (iii) $\sin x, \sin 2 x, \sin 3 x$ on $I=[0,2 \pi]$.
(OR)
(b) With usual notation, prove that $u L(v)-v L(u)=a_{0}(t) \frac{d}{d t} W[u, v]+a_{1}(t) W[u, v]$, where u, v are twice differentiable functions and a_{0}, a_{1} are continuous on I.
(c) Find the general solution of equation $x^{\prime \prime \prime}(t)-x^{\prime}(t)=e^{t}$.
(OR)
(d) Derive the various solutions of the second order linear homogenous equation with constant coefficients.
2. (a) State and prove Laplace's integral representation.
(OR)
(b) Let $P_{l}(x)$ be the Legendre's polynomial. Prove that $P_{l}(x)=\frac{1}{2^{l}} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l}$.
(c) Solve by Frobenius method, $x(1-x) \frac{d^{2} y}{d x^{2}}+(1-x) \frac{d y}{d x}-y=0$.
(OR)
(d) Derive the orthogonality properties of the Legendre's polynomial.
3. (a) Show that $I_{-n}(x)=(-1)^{n} I_{n}(x)$ where n is a positive or negative integer.

> (OR)
(b) Obtain the generating function of Bessel's function.
(c) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0$ where $n \geq 0$.
(OR)
(d) Derive the recurrence relations for Bessel's function.
4. (a) Argue that all the eigen values of Strum-Liouville problem are real.
(OR)
(b) Find the first three approximation of the initial value problem $x^{\prime}(t)=2 t(1-x), x(0)=1, t \geq 0$.
(c) State and prove Picard's theorem for boundary value problem.
(OR)
(d) Prove that $x(t)$ is a solution of the equation $L[x(t)]+f(t)=0, a \leq t \leq b$ if and only if $x(t)=\int_{a}^{b} G(t, s) f(s) d s$ where $G(t, s)$ is the Green's function.
5. (a) Explain asymptotically stable solution by an example.
(OR)
(b) Define an autonomous system and state the stability behaviours of the system.
(c) State and prove the fundamental theorems on the stability of non-autonomous systems.
(OR)
(d) Discuss the stability of linear system $x^{\prime}=A x$ using Lyapunov's function.

