LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2016
16PMT1MC05 - PROBABILITY THEORY AND STOCHASTIC PROCESS

Date: 12-11-2016
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

Answer ALL Questions:

1. (a) The joint probability distribution of two random variables X and Y is given by: $P(X=0, Y=1)=\frac{1}{3}, P(X=1, Y=-1)=\frac{1}{3}$, and $P(X=1, Y=1)=\frac{1}{3}$. Find (i) Marginal distribution of X and Y , and (ii) the conditional probability distribution of X given $\mathrm{Y}=1$.

OR
(b) Show that for t - distribution with n . degree of freedom, mean deviation about mean is given by $\sqrt{n} \Gamma\left[\frac{n-1}{2}\right] / \sqrt{\pi} \Gamma\left(\frac{n}{2}\right)$.
(c) The height of six randomly chosen sailors are (in inches): 63, 65, 68, 69, 71 and 72. Those of randomly chosen soldiers are $61,62,65,66,69,70,71,72$ and 73 . Discuss, the light that these data throw on the suggestion that sailors are on the average taller than soldiers.
(8)
(d) If the random variables X_{1} and X_{2} are independent and follow chi-square distribution with p. d. f., show that $\sqrt{n}\left(X_{1}-X_{2}\right) / 2 \sqrt{X_{1} \bar{X}_{2}}$ is distributed as student's t with n.d.f., independently of $X_{1}+X_{2}$.
(7)

OR
(e) Given $f(x, y)=e^{-(x+y)} I_{(0, \infty)}(x) \cdot I_{(0, \infty)}(y)$. Are X and Y independent?. Find (i) $P(X>1)$, (ii) $P(X<Y / X<2 Y)$, (iii) $P(1<X+Y<2)$.
(f) Two random samples gave the following results:

Sample	Size	Sample mean	Sum of squares of deviations from the mean
1	10	15	90
2	12	14	108

Test whether the sample come from the normal population at 5% level of significance.
$\left[F_{0.05}(9,11)=2.90, F_{0.05}(11,9)=3.10, t_{0.05}(20)=2.086, t_{0.05}(22)=2.07\right.$
2. (a) State and prove weak law of large number.

OR
(b) Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that $P(\mid X-$ $71 \geq 3) \leq \frac{35}{54}$.
(c) If the variables are uniformly bounded, then prove that the condition, $\lim _{n \rightarrow \infty} \frac{B_{n}}{n^{2}}=0$, is necessary as well as sufficient for WLLN to hold.
(d) How large a sample must be taken in order that the probability will be at least 0.95 that $\overline{X_{n}}$ will be within 0.5 of μ.

OR
(e) A random variable X assumes the values $\lambda_{1}, \lambda_{2}, \ldots$ with probabilities u_{1}, u_{2}, \ldots respectively. Show that $p_{k}=\frac{1}{k!} \sum_{j=0}^{\infty} u_{j} e^{-\lambda_{j}}\left(\lambda_{j}\right)^{k} ; \lambda_{j}>0, \sum u_{j}=1$ is a probability distribution. Find its generating function and prove that its mean equals $E(X)$ and variance equals $V(X)+E(X)$. (7)
(f) State and prove the converse of Borel- Cantelli lemma.
3. (a) If $\overline{T_{1}} \overline{a_{\mathrm{r}}} \overline{\mathrm{d}} \overline{T_{2}} \bar{a}_{\mathrm{i}}^{\overline{\mathrm{e}}} \overline{\text { e two unbiased estimators of }} \overline{\gamma(\theta)} \overline{\text { having the same variance and }} \bar{\rho} \overline{\mathrm{i}}$ the correlation between them, then show that $\rho \geqq 2 e-1$, where e is che efficiency of each estimator.

OR

(b) Estimate α and β in the case of Pearson's Type III distribution by the method of moments: $f(x ; \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, 0 \leq x<\infty$.
(c) State and prove the invariance property of consistent estimator.
(d) X_{1}, X_{2} and X_{3} is a random sample of size 3 from a population with mean value μ and variance $\sigma^{2}, T_{1}, T_{2}, T_{3}$ are the estimators used to estimate mean value μ, where $X_{2}-X_{3}, T_{2}=2 X_{1}-4 X_{2}+3 X_{3}$ and $T_{3}=\frac{\lambda X_{1}+X_{2}+X_{3}}{3}$.
(i) Are T_{1} and T_{2} unbiased estimators?
(ii) Find the value of λ such that T_{3} is unbiased estimator of μ.
(iii) With this value of λ is T_{3} a consistent estimator?
(iv) Which is the best estimator?
(8)

OR
(e) If T_{1} and T_{2} be two unbiased estimators of $\gamma(\theta)$ with variances $\sigma_{1}{ }^{2}, \sigma_{2}{ }^{2}$ and correlation ρ, what is the best unbiased linear combination of T_{1} and T_{2} and what is the variance of such a combination?
(7)
(f) Find the M. L. E of the parameters α and $\lambda(\lambda$ being large) of the distribution $f(x ; \alpha, \lambda)=$ $\frac{1}{\Gamma(\lambda)}\left(\frac{\lambda}{\alpha}\right)^{\lambda} e^{\frac{-\lambda x}{\alpha}} x^{\lambda-1}, 0 \leq x \leq \infty, \lambda>0$, where $\frac{\partial}{\partial \lambda} \log \Gamma(\lambda)=\log \lambda-\frac{1}{2 \lambda}$ and $\frac{\partial^{2}}{\partial \lambda^{2}} \log \Gamma(\lambda)=\frac{1}{\lambda}+\frac{1}{2 \lambda^{2}}$.
4. (a) Given the frequency function $f(x, \theta)=\left\{\begin{array}{cc}\frac{1}{\theta} & 0 \leq x \leq \theta \\ 0 & \text { elsewhere }\end{array}\right.$ and what you are testing the null hypothesis $H_{0}: \theta=1$ against $H_{1}: \theta=2$, by means of a single observed value of x . What would be the sizes of the type I and type II errors, if you choose the interval $0.5 \leq x$ as the critical region? Also obtain the power function of the test.

> OR
(b) Write a short note on sign test.
(c) State and prove Neyman Pearson Lemma
(d) Use the Neyman-Pearson Lemma to obtain the region for testing $\theta=\theta_{1}>\theta_{0}$ and $\theta=\theta_{1}<\theta_{0}$, in the case of normal population $N\left(\theta, \sigma^{2}\right)$, where σ^{2} is known.

OR
(e) Prove that most powerful (MP) or uniformly (UMP) critical region (CR) is necessarily unbiased.
(i) If W be an Most Powerful Critical Region of size α for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta=\theta_{1}$, when it is necessarily unbiased.
(ii) Similarly if W be Uniformly Most Powerful Critical Region of size α for testing $H_{0}: \theta=\theta_{0}$ against $H_{1}: \theta \in \Theta$, then it is also unbiased.
(f) Write down the advantages and disadvantages of non-parametric tests.
5. (a) A continuous random variable X has a p. d. f. $f(x)=3 x^{2}, 0 \leq x \leq 1$. Find a and b such that (i) $P(X \leq a)=P(X>a)$, and (ii) $P(X>b)=0.05$ OR
(b) Write a short note on classification of stochastic process.
(c) Briefly explain a time dependent general birth and death process in stochastic process.

OR
(d) Let P be the transition probability matrix of a finite N_{1} drkov chain with elements $0,1,2, \ldots, k-1)$. Then prove that n-step transition probabilities $p_{i j}^{(n)}$ are then obtained as the elements of the matrix P^{n}.
(e) Let $X \sim N(\mu, 4), \mu$ unknown.To test $H_{0}: \mu=-1$ against $H_{1}: \mu=1$, based on a sample of size 10 from this population, we use the critical region: $x_{1}+2 x_{2}+\cdots+10 x_{10} \geq 0$. What is its size? What is the power of the test?

