B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2016

16UMT1MCO1 - ALGEBRA AND CALCULUS - I

Date: 05-11-2016
Time: 01:00-04:00

Dept. No. \square Max. : 100 Marks

PART-A

Answer all questions:

1. Find the $\mathrm{n}^{\text {th }}$ derivative of $e^{-4 x}$.
2. Find the sub tangent to the curve $y^{2}=4 a x$.
3. How to examine a function $f(x, y)$ is minimum?
4. Write down the use of Lagrange's multipliers' method.
5. What is the radius of curvature of the curve $y=x^{3}+8$ at the point $(-2,0)$?
6. Write down a pedal equation of a curve.
7. Form a rational cubic equation which shall have for roots $1,3-\sqrt{-2}$.
8. Define reciprocal equation .
9. Show that the equation $x^{5}-6 x^{2}-4 x+5=0$ cannot have more than one negative root, using Descartes' rule.
10. Find the upper limit of the positive roots of the equation $2 x^{3}-5 x^{2}+x+10=0$.

PART-B

Answer any FIVE questions
11. If $y=\sin \left(m \sin ^{-1} x\right)$,Prove that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ and $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0$.
12. Find the angle at which the radius vector cuts the curve $\frac{l}{r}=1+e \cos \theta$.
13. Show that the maximum value of $x^{2} y^{2} z^{2}$ subject to the restriction $x^{2}+y^{2}+z^{2}=a^{2}$ is $\left(\frac{a^{2}}{3}\right)^{3}$.
14. Find the radius of curvature of the cardioids $r=a(1-\cos \theta)$.
15. Find the asymptotes of $y^{3}-6 x y^{2}+11 x^{2} y-6 x^{3}+x+y=0$.
16. Solve the equation $x^{4}+4 x^{3}+5 x^{2}+2 x-2=0$ of which one root is $-1+\sqrt{-1}$.
17. Show that the sum of the eleventh powers of the roots of $x^{7}+5 x^{4}+1=0$ is zero.
18. If the sum of two roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$, equals the sum of the other two roots, prove that $p^{3}+8 r=4 p q$.

PART-C

Answer any TWO questions:
19. (a) Find the $\mathrm{n}^{\text {th }}$ differential coefficient of $\cos ^{5} \theta \sin ^{7} \theta$.
(b) If $x y=a e^{x}+b e^{-x}$,prove that $x \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-x y=0$.
20. Find the maximum or minimum value of the function $x^{3} y^{2}(6-x-y)$.
21. Show that the evolute of the parabola $y^{2}=4 a x$ is $27 a y^{2}=4(x-2 a)^{3}$.
22.(a) Show that the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in A.P if

$$
\begin{equation*}
2 p^{3}-9 p q+27=0 \tag{10+10}
\end{equation*}
$$

(b) Solve the equation $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.

