LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2016
MT 1100 - MATHEMATICS FOR PHYSICS

Dept. No. \square Max. : 100 Marks
Date: 09-11-2016
Time: 01:00-04:00

SECTION A

ANSWER ALL QUESTIONS.
$(10 \times 2=20)$

1. Write the Leibnitz formula for the $n^{\text {th }}$ derivative of a product.
2. Write the formula for Subtangent and Subnormal in Polar form.
3. Prove that $\frac{e^{2}-1}{e^{2}+1}=\frac{\frac{1}{1}+\frac{1}{3!}+\frac{1}{5!}+\ldots x}{1+\frac{1}{24}+\frac{1}{4!}+\ldots x}$.
4. Define rank of a Matrix.
5. Find $L\left(1+12 t-6 e^{-t}\right)$.
6. Find $L^{-1}\left[\frac{7}{(s-3)^{2}+16}\right]$.
7. Write down the expansion of $\operatorname{Sinn} \theta$.
8. Separate the real and imaginary parts of $\cos (x+i y)$.
9. Two dice are thrown. What is the probability that the sum of the numbers is less than 4 ?
10. Define Binomial distribution.

SECTION B

ANSWER ANY FIVE QUESTIONS.
11. Find the $n^{\text {th }}$ differential coefficient of $\cos x \cdot \cos 2 x \cdot \cos 3 x$.
12. Show that in the parabola $y^{2}=4 a x$, the subtangent at any point is double the abscissa and the subnormal is constant.
13. Find the sum to infinity of the series $1+\frac{3}{4}+\frac{3.5}{4.8}+\frac{3.5 .7}{4.8 .12}+\cdots \infty$.
14. Find the eigen values of the matrix $\left(\begin{array}{lll}3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5\end{array}\right)$.
15. Prove that $\cos ^{5} \theta=\frac{1}{16}[\cos 5 \theta+5 \cos 3 \theta+10 \cos \theta]$.
16. If $\sin (A+i B)=x+i y$, then prove that (i) $\frac{x^{2}}{\cosh ^{2} B}+\frac{y^{2}}{\sinh ^{2} B}=1$ and (ii) $\frac{x^{2}}{\sin ^{2} A}-\frac{y^{2}}{\cos ^{2} A}=1$.
17. Find the inverse Laplace transform of $\frac{1}{s(s+1)(s+2)}$.
18. (i) Prove that $\sum_{\mathrm{x}=0}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!}=1$.
(ii) The mean and variance of a binomial distribution are 4 and $\frac{4}{3}$ respectively. Find $\quad P(X \geq 1)$.

SECTION C

ANSWER ANY TWO QUESTIONS. $\quad(2 \times 20=40)$
19. (a) If $y=\sin \left(m \sin ^{-1} x\right)$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}+m^{2} y=0$ and $\left(1-x^{2}\right) y_{n+2}-$ $(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y=0$.
(b) Find the Maxima and Minima of the function $f(x)=2 x^{3}-3 x^{2}-36 x+10$.
20. (a) Verify Cayley - Hamilton theorem for the matrix
$\left(\begin{array}{ccc}4 & -8 & 3 \\ 4 & -1 & -2 \\ 1 & -4 & 1\end{array}\right)$
(b) Find the Laplace transform of $t\left(\frac{\cos 3 t+3 \cos t}{4}\right)$.
21. (a) Express $\sin 7 \theta$ in terms of $\sin \theta$.
(b) Calculate the mean and standard deviation for the following table giving the age distribution of 542 members.

Age in years	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$
No. of members	3	61	132	153	140	51	2

22. (a) Solve $y^{\prime \prime}+4 y^{\prime}-5 y=5$, given $\mathrm{y}(0)=0$ and $y^{\prime}(0)=2$.
(b) A car hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used, and (ii) some demand is refused.
