Dept. No. \square

PART A

Answer all the questions:
($10 \times 2=20$)

1. If $f(x)=(4 x-1)(x-5)$, find the values of $f(3)$ and $f\left(\frac{1}{2}\right)$.
2. Differentiate $\frac{x^{3}}{3 x-2}$ with respect to x.
3. For what value of x is $6 x^{3}-2 x^{2}+7 x-4$ a decreasing function?
4. Find the point of inflexion on $y=x^{3}-9 x^{2}+7 x-6$.
5. Using Maclaurin's series, expand $\tan x$ as an infinite series.
6. Find the first order partial differential coefficients of $u=\cos (7 x+4 y)$.
7. Integrate $x^{2} e^{x}$ with respect to x.
8. Evaluate $\int \frac{d x}{4+9 x^{2}}$.
9. Write any two properties of definite integrals.
10. Find $\int_{1}^{2}\left(2 x^{3}+x-4\right) d x$.

PART B

Answer any FIVE questions: ($5 \times 8=40$)
11. (a) If $y=\frac{(x+3)}{(x+2)}$, find $\frac{d y}{d x}$.
(b) Prove that the tangents to the curve $y=x^{2}-5 x+6$ at the points $(2,0)$ and $(3,0)$ cut at right angles. (3+5)
12. Show that the curve $y=\frac{6 x}{x^{2}+3}$ has three points of inflexion.
13. Using mean value theorem, determine c, lying between a and b, when
(i) $f(x)=x^{3}-2 x^{2}, a=2, b=5$
(ii) $f(x)=x^{3}+x, \quad a=1, b=2$.
14. If $u=\log \left(x^{2}+y^{2}+z^{2}\right)$, prove that $x \frac{\partial^{2} u}{\partial y \partial z}=y \frac{\partial^{2} u}{\partial z \partial x}=z \frac{\partial^{2} u}{\partial x \partial y}$.
15. Integrate $x^{2} \cos 3 x$ with respect to x.
16. Evaluate $\int \frac{x}{x^{2}+x+1} d x$.
17. Prove that $\int_{0}^{\frac{\pi}{2}} \log \sin x d x=\frac{\pi}{2} \log \left(\frac{1}{2}\right)$.
18. Evaluate $\iint\left(x^{2}+y^{2}\right) d x d y$ over the region for which $x, y \geq 0$ and $x+y \leq 1$.

PART C

Answer any TWO questions:
$(2 \times 20=40)$
19. (a) If $f(x)=x^{3}+x^{2}+x-1$, simplify $f(x+1)-3 f(x)+2 f(x-1)$
(b) If $y=\sin x \sin 2 x \sin 3 x$, find $\frac{d y}{d x}$.
(c) Differentiate $x^{(\log x)^{2}}$ with respect to $(x \log x)(\log \log x)$
20. (a) Find the maximum and minimum values of the function $y=x^{3}-18 x^{2}+96 x+1$.
(b) Prove that $\log \left(1+x+x^{2}\right)=x+\frac{1}{2} x^{2}-\frac{2}{3} x^{3}+\frac{1}{4} x^{4}+\cdots$.
21. (a) Verify Euler's theorem when $u=x^{3}-3 x^{2} y+3 x y^{2}+y^{3}$.
(b) Prove that $\int_{0}^{\frac{\pi}{4}} \log (1+\tan \theta) d \theta=\frac{\pi}{8} \log 2$.
22. (a) Evaluate $\int \frac{d x}{(x+1) \sqrt{x^{2}+x+1}}$.
(b) By transforming into polar coordinates, evaluate $\iint \frac{x^{2} y^{2}}{x^{2}+y^{2}} d x d y$ over the annular region between the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}(b>a)$.

