LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2016

\square Max. : 100 Marks

SECTION - A

(Answer ALL questions)

$(10 \times 2=20)$

1. Find the equation of the line passing through $(2,9)$ and $(2,-9)$.
2. Find the domain and range of $f(x)=\frac{-2}{x-5}$.
3. State the principle of least square.
4. Reduce $\mathrm{y}=\mathrm{ax}{ }^{\mathrm{n}}$ to the linear form where a and n are constants.
5. Solve $\mathrm{y}_{\mathrm{x}+2}-8 \mathrm{y}_{\mathrm{x}+1}+15 \mathrm{y}_{\mathrm{x}}=0$.
6. Find the particular integral of $y_{n+2}-4 y_{n+1}+3 y_{n}=2^{n}$.
7. Give an example of a symmetric matrix.
8. Define orthogonal matrix.
9. Find the Fourier constant a_{0} for $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$ in $-\pi<\mathrm{x}<\pi$.
10. Define half range Fourier series.

SECTION - B

(Answer any FIVE questions)
11. The demand for a certain commodity is related to the price by $p=80-(2 / 3) x$. The supply is related to the price by $p=\frac{4}{3} x$. Find the equilibrium demand and the equilibrium price.
12. (a) Complete the square and graph the function $f(x)=-x^{2}+6 x-12$.
(b) The price and the demand for an item are related by $p=32-x^{2}$, while price and supply are related by $p=x^{2}$. Find the equilibrium supply.
13. Use the method of least squares to fit a straight line to the following data:

$\mathrm{x}:$	0	5	10	15	20
$\mathrm{y}:$	7	11	16	20	26

Estimate the value of y when $\mathrm{x}=25$.
14. Find the difference equation satisfied by $y=a x^{2}-b x$.
15. Solve $y_{x+2}-6 y_{x+1}+8 y_{x}=4^{x}$.
16. Verify Caley Hamilton theorem for the matrix $\left[\begin{array}{rll}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$.
17. Find all eigen vectors of the matrix $\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$.
18. Obtain Fourier expansion for the function $f(x)=\frac{1}{2}(\pi-x), 0<x<2 \pi$.

SECTION - C

(Answer any TWO questions)
19. (a) When a company sells x units of a product, its profit is $P(x)=-2 x^{2}+40 x+280$. Find (i) the number of units that should be sold so that maximum profit is received and (ii) the maximum profit.
(b) Convert the equation $\mathrm{y}=\frac{x}{a+b x}$ to a linear form and hence determine the values of a and b which will best fit the following data:

$$
\begin{array}{lllllll}
\mathrm{x}: & 8 & 10 & 15 & 20 & 30 & 40 \\
\mathrm{y}: 13 & 14 & 15.4 & 16.3 & 17.2 & 17.8
\end{array}
$$

20. (a) Solve the difference equation $u(x+2)-4 u(x)=9 x^{2}$.
(b) Solve $y_{n+2}+y_{n+1}-56 y_{n}=2^{n}\left(n^{2}-3\right)$.
21. Diagonalize the matrix $\left[\begin{array}{ccc}2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$.
22. (a) Obtain a Fourier expansion for $f(x)=\left\{\begin{array}{rr}-\pi, & -\pi<x<0 \\ x, & 0<x<\pi .\end{array}\right.$
(b) Find the Fourier series for $f(x)=|x|$ in $-\pi<x<\pi$ and deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
