LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIRST SEMESTER - NOVEMBER 2016

MT 1502 - ALGEBRA AND CALCULUS - I

Date: 05-11-2016
Time: 01:00-04:00

Dept. No.

\square Max. : 100 Marks

PART-A

Answer ALL questions:
$(10 \times 2=20)$
[1] Find the $\mathrm{n}^{\text {th }}$ differential coefficient of $(2 x+3)^{m}$.
[2] Show that the polar sub tangent of the curve $r=e^{\theta \cot \alpha}$ is $r \tan \alpha$.
[3] Write down the condition for maxima or minima of two variables.
[4] Write the steps used in Lagrange's method of undetermined multiplier to find the minimum or maximum value of $f(x, y, z)$ subject to the condition $\varphi(x, y, z)=0$.
[5] Define curvature.
[6]Write down the pedal equation of a curve.
[7]Form a rational cubic equation which have the roots $1,3-\sqrt{-2}$.
[8]Find the sum and the product of the four roots of the equation $x^{4}-2 x^{3}+4 x^{2}+6 x-21=0$.
[9] Find the imaginary roots of the equation $x^{7}+8 x^{5}-x+9=0$.
[10] If α, β, γ are the roots of the equation $x^{3}+q x+r=0$, find the equation whose roots are $5 \alpha, 5 \beta, 5 \gamma$.

PART-B

Answer any FIVE
$(5 \times 8=40)$
[11] Find (i) $D^{n}\left(\cos ^{3} x\right) \quad$ (ii) $D^{n}\left(e^{x} \sin x\right)$
[12]Find the angle of intersection of the cardioids $r=a(1+\cos \theta)$ and $r=b(1-\cos \theta)$.
[13] Discuss the maxima or minima of the function $f=y^{2}+2 y x^{2}+4 x-3$.
[14]Find the minimum value of $f=x^{2}+y^{2}+z^{2}$ when $x+y+z=3 a$.
[15] Prove that the radius of curvature at any point of the cycloid

$$
x=a(\theta+\sin \theta) \text { and } y=a(1-\cos \theta) \text { is } 4 a \cos \frac{\theta}{2} .
$$

[16]Solve the equation $x^{4}+4 x^{3}+5 x^{2}+2 x-2=0$ which one root is $-1+\sqrt{-1}$.
[17]Find $\frac{1}{\alpha^{5}}+\frac{1}{\beta^{5}}+\frac{1}{\gamma^{5}} \quad$,when α, β, γ are the roots of the equation $x^{3}+2 x^{2}-3 x-1=0$.
[18] Show that the roots of the equation $x^{3}+p x^{2}+q x+r=0$, are in A.P if $2 p^{3}-9 p q+27 r=0$.

PART-C

Answer any TWO:
$(2 \times 20=40)$
[19] (i) If $y=e^{a \sin ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{2}-x y_{1}-a^{2} y=0$. Hence show that

$$
\begin{equation*}
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+a^{2}\right) y_{n}=0 \tag{10+10}
\end{equation*}
$$

(ii) Find the maximum or minimum values of $2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}$.
[20] (i) Find the evolute of the parabola $y^{2}=4 a x$ at the time ' t '.
(ii) Find the asymptotes of $x^{3}+2 x^{2} y-x y^{2}-2 y^{3}+4 y^{2}+2 x y+y-1=0$.
[21] (i) If the sum of the two roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$ equals the sum the other two, prove that $p^{3}+8 r+=4 p q$.
$(10+10)$
(ii) Solve the equation $6 x^{5}-x^{4}+43 x^{3}+43 x^{2}+x-6=0$.
[22] (i) Decrease the roots of the equation $x^{5}-6 x^{2}-4 x+5=0$ by 3 .
(ii)Find the real root of $x^{3}-7 x+7=0$ correct to two place of decimals using Horner's method.

