LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2016
MT 1816-REAL ANALYSIS

Date: 04-11-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Answer all Questions. All questions carry equal marks.

1. (a) State and prove the fundamental theorem of calculus.
(OR)
(b) If P^{*} is a refinement of P then prove that $\quad L(P, f, \propto) \leq L\left(P^{*}, f, \propto\right)$ and $U\left(P^{*}, f, \propto\right) \leq U(P, f, \propto)$.
(c) State and prove a necessary condition and sufficient condition for a bounded real valued function to be a Riemann-Steiltjes integrable.
(OR)
(d) Assume α increases monotonically and $\alpha^{\prime} \in \Re$ on $[\mathrm{a}, \mathrm{b}]$. Let f be a bounded real function on $[\mathrm{a}, \mathrm{b}]$. Then prove that $f \in \mathbb{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathfrak{R}$. Also prove that $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
2. (a) State and prove the Cauchy criterion for uniform convergence of sequence of functions.
(OR)
(b) Prove that for $f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}, 0 \leq x \leq 1, n=1,2 \ldots$,

$$
\begin{equation*}
\int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x \neq \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x \tag{5marks}
\end{equation*}
$$

(c) State and prove the Stone-Weierstrass theorem.
(OR)
(d) If $\left\{f_{n}\right\}$ is a sequence of differentiable functions on $[\mathrm{a}, \mathrm{b}]$ such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for $x_{0} \in[a, b]$ and $\left\{f_{n}{ }^{\prime}\right\}$ converges uniformly on $\{\mathrm{a}, \mathrm{b}]$ then prove that $\left\{f_{n}\right\}$ converges uniformly on $[\mathrm{a}, \mathrm{b}]$ to a function f and $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)$.
(15 marks)
3. (a) Let $S=\left\{\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots\right\}$, where $\varphi_{0}(x)=\frac{1}{\sqrt{2 \pi}}, \varphi_{2 n-1}(x)=\frac{\cos n x}{\sqrt{\pi}}$ and $\varphi_{2 n}(x)=\frac{\sin n x}{\sqrt{\pi}}$, for $\mathrm{n}=1,2 \ldots$ Prove that S is orthnormal on any interval of length 2π.
(OR)
(b) State and prove the Bessel's Inequality and Parseval's formula.
(5 marks)
(c) (i) Define Dirichlet's kernel and prove that $\frac{1}{2}+\sum_{k=1}^{n} \cos k x=\frac{\sin (2 n+1) \frac{x}{2}}{2 \sin \frac{x}{2}}, x \neq 2 m \pi$
(ii) If $f \in L[0,2 \pi]$, f is periodic with period 2π and $\left\{s_{n}\right\}$ is a sequence of partial sums of Fourier series generated by f, $s_{n}=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right), n=1,2 \ldots$ then prove that

$$
S_{n}(x)=\frac{2}{\pi} \int_{0}^{\pi} \frac{f(x+t)+f(x-t)}{2} D_{n}(t) d t .
$$

(5+10 marks)
(OR)
(d) State and prove the Riemann-Lebesgue lemma and use the lemma to prove the following:

$$
\text { for } f \in L(-\infty,+\infty), \lim _{\infty \rightarrow \infty} \int_{-\infty}^{\infty} f(t) \frac{1-\cos \alpha t}{t} d t=\int_{0}^{\infty} \frac{f(t)-f(-t)}{t} d t . \quad(15 \mathrm{marks})
$$

4. (a) If $\mathrm{A}, \mathrm{B} \in \mathrm{L}\left(\mathrm{R}^{\mathrm{n}}, \mathrm{R}^{\mathrm{m}}\right)$ and c is a scalar, then prove that, $\| \overline{A+B\|\leq\|} \overline{A \|+} \overline{B \| \text { an }}$ $\|c A\|=|c|\|A\|$
(OR)
(b) Suppose X is a complete metric space and ϕ is a contraction of X into X . Prove that there exist one and only one $x \in X$ such that $\phi(x)=x$..
(c) State and prove the inverse function theorem.

(OR)

(d) State and prove the implicit function theorem.
5. (a) Define heat flow and the heat equation.

> (OR)
(b) Explain rectilinear coordinate system with algebraic and geometric approach.
(c) Derive the expression for Newton's Law of Cooling.
(OR)
(d) Derive the D^{\prime} Alembert's wave equation for a vibrating string.

