LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 SECOND SEMESTER - NOVEMBER 2016

MT 2503 - ANALY. GEOM. OF 3D, FOURIER SERIES \& NUM. THEORY

Date: 14-11-2016
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL questions.

$(10 \times 2=20)$

1. Find the angle between the planes $2 x-y+z=6, x+y+2 z=3$.
2. State the equation of the straight line joining two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$.
3. Find the equation of the sphere with centre $(-1,2,-3)$ and radius 3 units.
4. What is the general equation of the sphere passing through a circle?
5. Find the Fourier coefficient a_{0} for the function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ in the interval $(-\pi, \pi)$.
6. Give the Fourier series expansion of an odd function.
7. Find the number of divisors of 480 excluding 1 and 480.
8. State Wilson's theorem.
9. State Cauchy's inequality.
10. Show that $\mathrm{n}^{\mathrm{n}}>1$.3.5. $(2 \mathrm{n}-1)$.

PART - B

Answer any FIVE questions

11. Find the equation of the plane which passes through the point $(-1,3,2)$ and perpendicular to the planes $x+2 y+2 z=5$ and $3 x+3 y+2 z=8$.
12. Find the symmetric form of the equation of the straight line which is the intersection of the planes $\mathrm{x}+5 \mathrm{y}-\mathrm{z}=7$ and $2 \mathrm{x}-5 \mathrm{y}+3 \mathrm{z}+1=0$.
13. Find the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z+7=0, \quad 2 x-$ $y+2 z=5$ for a great circle.
14. Find the equation of the sphere which touches the sphere $x^{2}+y^{2}+z^{2}-6 x+2 z+1=0$ at the point $(2,-2,1)$ and passes through the origin.
15. Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series with period 2π in the interval $[0,2 \pi]$.
16. If $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots \mathrm{~d}_{\mathrm{r}}$ (including 1 and N$)$ are the divisors of N , then show that $\varphi\left(\mathrm{d}_{1}\right)+\varphi$ $\left(d_{2}\right)+\ldots \varphi\left(d_{r}\right)=N$.
17. Show that $13^{2 n+1}+9^{2 n+1}$ is divisible by 22 .
18. Prove that $8 x y z<(x+y)(y+z)(z+x)<\frac{8}{3}\left(x^{3}+y^{3}+z^{3}\right)$.

PART - C

Answer any TWO questions.

$$
(2 \times 20=40)
$$

19. (a) Show that the origin lies in the acute angle between the planes $x+2 y+2 z=9,4 x-3 y$ $+12 z+13=0$. Find the planes bisecting the angles between them and point out which bisects the obtuse angle.
(b) Find the shortest distance between the lines

$$
\frac{x-3}{-1}=\frac{y-4}{2}=\frac{z+2}{1}, \frac{x-1}{1}=\frac{y+7}{3}=\frac{z+2}{2} .
$$

20. (a) Find the equation of the sphere passing through the points $(2,3,1),(5,-1,2),(4,3,-1)$ and $(2,5,3)$.
(b) Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-2 x-$ $4 y=0 ; x+2 y+3 z=8$ and touches the plane $4 x+3 y=25$.
21.(a) If $f(x)=-x$ in $-\pi<x<0=x$ in $0 \leq x<\pi$, expand $f(x)$ as Fourier series in the interval $(-\pi, \pi)$ and deduce that $\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots$.
(b) If x and y are primes to the prime number n, show that $x^{n-1}-y^{n-1}$ is divisible by n. Deduce that $\mathrm{x}^{12}-\mathrm{y}^{12}$ is divisible by 1365 .
21. (a) If $M=1.3 .5 \ldots(p-2)$ where p is an odd prime, show that $M^{2} \equiv(-1)^{\frac{p+1}{2}}(\bmod p)$.
(b) If x and y are positive quantities whose sum is 4 , show that $\left(x+\frac{1}{x}\right)^{2}+\left(y+\frac{1}{y}\right)^{2} 4$. $12 \frac{1}{2}$.
