LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - NOVEMBER 2016

MT 2812 - PARTIAL DIFFERENTIAL EQUATIONS

Date: 08-11-2016
Dept. No. \square Max. : 100 Marks

Answer all questions. Each question carries $\mathbf{2 0}$ marks.

1. (a) Show that the equations $x p-y q=x, p x^{2}+q=x z$ are compatible and solve them.

OR

(b) Eliminate the arbitrary function f from the relation $z=x y+f\left(x^{2}+y^{2}\right)$.
(c) Find the characteristic of the equation $p q=z$ and determine the integral surface which passes through the parabola $x=0, y^{2}=z$.

OR

(d) Find the complete integral for the following equations using Jacobi's method:
(i) $p^{2} x+q^{2} y=z$
(ii) $x p q+y q^{2}=1$
(iii) $p=(z+q y)^{2}$.
$(4+5+6)$
2. (a) If f and g are arbitrary function, show that $u=f(x-v t+i \alpha y)+g(x-v t-i \alpha y)$ is a solution of $u_{x x}+$ $u_{y y}=\frac{1}{c^{2}} u_{t t}$ provided $\alpha^{2}=1-\frac{v^{2}}{c^{2}}$.

OR

(b) Prove that $L(u)=c^{2} u_{x x}-u_{t t}$ is a self adjoint.
(c) Obtain the canonical forms of parabolic, elliptic and hyperbolic partial differential equations.

OR

(d) Reduce the equation $u_{x x}+y^{2} u_{y y}=y$ to canonical form.
3. (a) Derive Laplace equation.

OR

(b) Obtain one-dimensional wave equation.
(5)
(c) State and prove Interior Dirichlet problem for a circle.

OR

(d) Determine the solution of heat conduction equation in spherical polar coordinates.
4. (a) A uniform string of length L is stretched tightly between two fixed points at $x=0$ and $x=l$. If it is displaced a small distance d at a point $x=b, 0<b<l$, and released from rest at time $t=0$, find an expression for the displacement at subsequent times.
(5)

OR

(b) Show that the Green's function $G\left(\bar{r}, \overline{r^{\prime}}\right)$ has the symmetry property.
(5)
(c) Find the solution of the initial value problem given by $\frac{\partial^{2} u}{\partial x^{2}}=k \frac{\partial u}{\partial t^{\prime}}, 0<x<l$,
$0<t<\infty$ subject to the conditions $u(0, t)=0, u(l, t)=g(t), 0<t<\infty$, $u(x, 0)=0,0<x<l$ using Laplace transform method.

OR

(d) Obtain the solution of interior Dirichlet problem for a sphere using Green's function method.
5. (a) Find the resolvent kernel for Kernel $K(x, t)=x-2 t, 0 \leq x \leq 1,0 \leq t \leq 1$.

OR

(b) Show that all iterated kernels of a symmetric kernel are also symmetric.
(c) Find the solution of Volterra integral equation of second kind by successive approximations.

OR

(d) State and prove Hilbert- Schmidt theorem.

