M.Sc. DEGREE EXAMINATION - MATHEMATICS

SECOND SEMESTER - NOVEMBER 2016
MT 2814-COMPLEX ANALYSIS

Date: 15-11-2016
Time: 01:00-04:00
Dept. No. \square Max. : 100 Marks

Answer all the questions.

1. a) State and prove Cauchy's Estimate.

OR
b) Define (i) Zeros of an analytic function (ii) index of a closed curve (iii) FEP homotopic (iv) Simply connected.
c) State and prove Goursat's theorem.

OR

d) State and prove homotopic version of Cauchy's theorem.
2. a) State and prove Hadamard's three circles theorem.

OR

b) Prove that a differentiable function f on $[a, b]$ is convex if and only if f^{\prime} is increasing.
c) Prove that any set $\mathscr{F} \subset C(G, \Omega)$ is normal if and only if the following conditions are satisfied: (i) for each z in $G,\{f(z): f \in \mathfrak{F}\}$ has compact closure in Ω (ii) \mathfrak{F} is equicontinuous at each point of G.

OR

d) Let G be a region which is not the whole plane and let $a \in G$ then prove that there is a unique analytic function $f: G \rightarrow C$ having the properties (a) $f(a)=0$ and $f^{\prime}(a)>0$ (b) f is one-one and (c) $f(G)=D=\{z:|z|<1\}$.
3. a) Show that $\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right)$.

OR

b) If $|z| \leq 1$ and $p \geq 0$ then prove that $\left|1-E_{p}(z)\right| \leq\left. z\right|^{p+1}$.
c) (i) If $\operatorname{Re} z_{n}>-1$ then prove that $\sum \log \left(1+z_{n}\right)$ converges absolutely if and only if $\sum z_{n}$ converges absolutely.
(ii) Let (X, d) be a compact metric space and let $\left\{g_{n}\right\}$ pe a sequence of continuous functions from X into \mathbb{C} such that $\sum g_{n}(x)$ converges absolutely and uniformly for x in X. Then prove that the product $f(x)=\prod_{n=1}^{\infty}\left(1+g_{n}(x)\right)$ converges absolutely and uniformly for x in X. Also prove that there is an integer n_{0} such that $f(x)=0$ if and only if $g_{n}(x)=-1$ for some $n, 1 \leq n \leq n_{0}$.

OR

d) (i) State and prove Bohr-Mollerup theorem.
(ii) Let X be a set and let f, f_{1}, f_{2}, \ldots be functions from X into \mathbb{C} such that $f_{n}(x) \rightarrow f(x)$ uniformly for $x \in X$. If there is a constant a such that $\operatorname{Re} f(x) \leq a$ for all $x \in X$ then prove that $\exp f_{n}(x) \rightarrow$ $\exp f(x)$ uniformly for $x \in X$.
4. a) State and prove Jensen's formula.

OR

b) If f is an entire function with finite order λ, where λ is not an integer then prove that f has infinitely many zeros.
c) Let f be a non-constant entire function of order λ with $f(0)=1$, and let $\left\{a_{1}, a_{2}, \ldots\right\}$ be the zeros of f counted according to multiplicity and arranged so that $\left|a_{1}\right| \leq\left|a_{2}\right| \leq \cdots$. If an integer $p>\lambda-1$ then prove that $\frac{d^{p}}{d z^{p}}\left(\frac{f^{\prime}(z)}{f(z)}\right)=-p!\sum_{n=1}^{\infty} \frac{1}{\left(a_{n}-z\right)^{p+1}}$ for $z \neq a_{1}, a_{2}, \ldots$

OR

d) State and prove Hadamard's Factorization theorem.
5. a) Show that $\wp(z)-\wp(u)=-\frac{\sigma(z-u) \sigma(z+u)}{\sigma(z)^{2} \sigma(u)^{2}}$.

OR

b) Prove that an elliptic function without poles is a constant.
c) (i) Prove that a discrete module consists of either of zero alone, of the integral multiples nw of a single complex number $w \neq 0$ or of linear combinations $n_{1} w_{1}+n_{2} w_{2}$ with integral coefficients of two numbers w_{1}, w_{2} with non real ratio $\frac{w_{2}}{w_{1}}$.
(ii) Prove that $n_{1} w_{2}-n_{2} w_{1}=2 \pi i$

OR

d) Prove that $\wp(z)$ is an elliptic function.

