B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2016
MT 3102-MATHEMATICS FOR PHYSICS

Date: 12-11-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

SECTION A

ANSWER ALL QUESTIONS.

1. Find the $n^{\text {th }}$ derivative of $y=\log (4 x+8)$
2. Find the slope of the curve $r=e^{\theta}$ at $\theta=0$.
3. Write the expansion for $(1-x)^{\frac{-p}{q}}$.
4. Define skew-symmetric matrix .
5. Find the Laplace transform of $\cos a t$.
6. Find $\mathrm{L}\left(t^{2}+2 t\right)$.
7. Write down the expansion for $\cos 5 \theta$.
8. Show that $\cos ^{2} x-\sinh ^{2} x=1$.
9. What is the chance of that the leap year selected at random will contain 53 Sundays?
10. Define Poisson distribution.

SECTION B

ANSWER ANY FIVE QUESTIONS.

11. Find the $n^{\text {th }}$ differential coefficient of $\cos x \cdot \cos 2 x \cdot \cos 3 x$.
12. Find the angle of intersection of curves $r=\frac{a}{1+\cos \theta}$ and $r=\frac{b}{1-\cos \theta}$.
13. Show that $\log \left(\frac{n+1}{n}\right)=2\left(\frac{1}{2 n+1}+\frac{1}{3(2 n+1)^{3}}+\frac{1}{5(2 n+1)^{5}}+\cdots\right)$.
14. Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right)$
15. Find the Laplace transform of $f(t)=\left\{\begin{array}{cc}e^{-t} & 0<t<4 \\ 0 & t>4\end{array}\right.$.
16. Express $\sin ^{7} \theta$ in a series of sines of multiplies of θ.
17. If $\cos (x+i y)=\cos \theta+i \sin \theta$, prove that $\cos 2 x+\cosh 2 y=2$.
18. Find the mean and standard deviation for the following frequency distribution:

Class Interval	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$	$20-24$	$24-28$
Frequency	10	12	18	7	5	3	4

SECTION C

ANSWER ANY TWO QUESTIONS.

$(2 \times 20=40)$
19. (a) If $y=\sin ^{-1} x$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+n^{2} y_{n}=0$.
(b) Find the maximum value of $\frac{\log x}{x}$ for positive values of x.
20. Find the characteristic roots and associated characteristic vectors of the matrix
$A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$.
21. (a) Express $\sin 7 \theta$ in terms of $\sin \theta$.
(b) Find the sum to infinity of the series $1+\frac{1+3}{2!}+\frac{1+3+3^{2}}{3!}+\frac{1+3+3^{2}+3^{3}}{4!}+\cdots \infty$.

$$
(10+10)
$$

22. (a) Solve the equation $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+5 y=4 e^{-t}$ given that $y=\frac{d y}{d t}=0$ when $t=0$.
(b) A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins in boxes of 100 and guarantees that not more than 10 pins will be defective, what is the approximate probability that a box will fail to meet the guaranteed quality?
(12+8)
