LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.A., B.COM. DEGREE EXAMINATION - ECONOMICS, COMMERCE, COR. SEC.

THIRD SEMESTER - NOVEMBER 2016

MT 3203 / MT 3204 - BUSINESS MATHEMATICS

Date: 10-11-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

Part A

Answer ALL the questions

1. Define total cost function.
2. The marginal cost function of a product is given by $\frac{d c}{d q}=100-10 q+0.1 q^{2}$, where q is the output. Obtain the total cost function of the firm under the assumption that its fixed cost is Rs. 500 .
3. Find the differential coefficient of $9 x^{4}-7 x^{3}+8 x^{2}-\frac{8}{x}+\frac{10}{x^{2}}$ with respect to x.
4. Define the price elasticity of demand.
5. Evaluate $\int\left(3-2 x-x^{4}\right) d x$.
6. Prove that $\int_{a}^{b} f(x)+\int_{b}^{c} f(x)=\int_{a}^{c} f(x)$.
7. Integrate $\int_{-1}^{1}\left(2 x^{2}-x^{3}\right) d x$.
8. Find the rank of the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 5 & 7\end{array}\right)$.
9. If $A=\left(\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right)$ and $B=\left(\begin{array}{cc}-3 & 2 \\ 4 & -1\end{array}\right)$ then find C where $2 C=A+B$.
10. Define objective function.

Part B

Answer any FIVE questions

11. If the demand law is $p=\frac{10}{(x+1)^{2}}$, find the elasticity of the demand in terms of x.
12. If $A R$ and MR denote the average and marginal revenue at any output, show that elasticity of demand is equal to $\frac{A R}{A R-M R}$. Verify this for the linear demand law $p=a+b x$.
13. Investigate the maxima and minima of the function $2 x^{3}+3 x^{2}-36 x+10$.
14. If $y=\sqrt{x+1}+\sqrt{x-1}$, prove that $\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d x}{d y}=\frac{1}{4} y$.
15. Integrate $\frac{x^{3}}{\left(x^{2}+1\right)^{3}}$ with respect to x.
16. Find the inverse of the matrix $A=\left(\begin{array}{ccc}1 & 0 & -4 \\ -2 & 2 & 5 \\ 3 & -1 & 2\end{array}\right)$.
17. Find the matrix B if $A=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$ and $A+2 B=A^{2}$.
18. Resolve into partial fractions $\frac{x}{(x-1)(2 x+1)}$.

Part C

Answer Any TWO Questions.

19. (a) If the marginal revenue function for output x is given by $R_{m}=\frac{6}{(x+2)^{2}}+5$,
find the total revenue by integration. Also deduce the demand function.
(b) Let the cost function of a firm is given by the following equation:
$C=300 x-10 x^{2}+\frac{1}{3} x^{3}$, where C stands for cost and x for output. Find the output at which (i) Marginal cost is minimum. (ii) Average cost is minimum. (iii) Average cost is equal to Marginal cost.
(10+10)
20. (a) Find the second order partial derivative of $u=4 x^{2}+9 x y-5 y^{2}$.
(b) If $\mathrm{y}=\left(x+\sqrt{1+x^{2}}\right)^{m}$, show that $\left(1+x_{2}\right) y_{2}+x y_{1}=m^{2} y$.
(c) If $x \sqrt{1+y}+y \sqrt{1+x}=0$, prove that $\frac{d y}{d x}=\frac{-1}{(1+x)^{2}}$.
21. (a) Integrate $\frac{x+5}{(x+1)(x+2)^{2}}$ with respect to x.
(b) Evaluate $\int x^{2} e^{3 x} d x$.
(10+10)
22. (a) Solve the system of the following equations using matrix method.

$$
x+y+z=7 ; x+2 y+3 z=16 ; x+3 y+4 z=22 .
$$

(b) Solve the following linear programming problem graphically:

Maximize $Z=2 x_{1}+5 x_{2}$ Subject to $x_{1}+x_{2} \leq 24,3 x_{1}+x_{2} \leq 21, x_{1}+x_{2} \leq 9$, $x \geq \mathrm{J}, y \geq 0$.
(10+10)

