LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2016
MT 3964 - FORMAL LANGUAGES AND AUTOMATA

Date: 09-11-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

ANSWER ALL QUESTIONS

I. a) Construct a DFA to accept all strings over $\{0,1\}$ having 00 as a substring.
[OR]
b) Construct a finite automaton accepting $L=\left\{0^{n} 1^{n} / n \geq 1\right\}$.
c) i) Let L be the language accepted by a NFA .Prove that there exist a DFA accepts L.
ii) Let L be the set of all positive integers divisible by 4 . Design a NFA to accept L.
[OR]
d) i) Let r be a regular expression. Then prove that there exists an NFA with \in - moves that accepts $L(r)$.
ii) Enumerate the difference between DFA and NFA.
II. a) Prove that union of two regular set is a regular set.
[OR]
b) Write the language of the regular expression $\mathbf{1 1}(\mathbf{0}+\mathbf{1}) * \mathbf{0 0}$. Also write any four strings of this language.
c) i) Construct an NFA with \in - moves for the regular expression $(0+1) * 11+(01) * 0$.
ii) Construct an equivalent DFA to the following NFA.

	0	1
$\rightarrow \mathrm{q}_{0}$	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{0}\right\}$
q_{1}	$\left\{\mathrm{q}_{2}\right\}$	$\left\{\mathrm{q}_{3}\right\}$
$* \mathrm{q}_{2}$	ϕ	$\left\{\mathrm{q}_{1}\right\}$
$* \mathrm{q}_{3}$	ϕ	ϕ

[OR]
d) Minimize the following automaton.

	0	1
$\rightarrow \mathrm{~A}$	B	F
B	G	C
$* \mathrm{C}$	A	C
D	C	G
E	H	F
F	C	G
G	G	E
H	G	C

III a) Construct a grammar to generate all four digit positive even integers.
[OR]
b) Eliminate useless symbols in the following grammar.
$S \rightarrow a A / a / B b / c C, A \rightarrow a B, B \rightarrow a / A a, C \rightarrow c C D, D \rightarrow d d d$
c i) Discuss Chomsky's hierarchy.
ii) Construct a grammar to generate $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$.
[OR]
d i) Discuss Chomsky's normal form.
ii) Let G be a grammar with production rules $\mathrm{S} \rightarrow \mathrm{abSb} / \mathrm{a} / \mathrm{aAb}, \mathrm{A} \rightarrow \mathrm{bS} / \mathrm{aAAb}$. Construct a CNF to generate G.

IV a) Define instantaneous description of a PDA.
[OR]
b) Define ambiguous grammar and give an example.
c) If a language L is accepted by a PDA A by empty stack then prove that there exist a PDA B accepts the same language L by final state.
[OR]
d) Let L be the set of all strings over $\{a, b\}$ containing equal number of a 's and b 's.

Construct a PDA to accept L by
(i) Empty stack.
(ii) Final state.

V a) Define a Turing Machine.Also write about the moves of a Turing Machine.
[OR]
b) Differentiate multi tape and multi track Turing Machines .
c) Design a TM to accept the language $L=\left\{a^{n} b^{n} c^{n} / n \geq 1\right\}$. [OR]
d) Design a Turing Machine to perform proper subtraction.

