## LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

## M.Sc. DEGREE EXAMINATION – MATHEMATICS

## MT 3965 - NUMERICAL ANALYSIS

Date: 09-11-2016 Dept. No. Max. : 100 Marks
Time: 09:00-12:00

THIRD SEMESTER - NOVEMBER 2016

Answer ALL the questions.

1. a) Discuss the rate of convergence of Newton Raphson Method.

OR

- b) Find a real root of the equation  $x^3 2x 5 = 0$  using secant method correct to two decimal places.
- c) Find a root of the equation  $x^3 x 11 = 0$  correct to three decimal places using bisection method. (15)

OR

- d) Find a real root of the equation  $xe^x = 3$  by the Regula falsi method correct to three decimal places. (15)
- 2. a) Find the cubic polynomial which takes the following values: y(1) = 24, y(3) = 120, y(5) = 336 and y(7) = 720.

OR

- b) Find the third order Hermite polynomial passing through the points  $(x_i, y_i, m_i)$ , i = 0,1. (5)
- c) Derive Gauss forward formula for central differences. (15)
- d) The following table gives the values of  $e^x$  for certain equidistant values of x. Find the value of  $e^x$  when x = 0.644 and x = 0.638 using Stirling's and Bessel's formulae.

| ivan<br>x =<br>x | irling y |
|------------------|----------|
| 0.61             | 1.840431 |
| 0.62             | 1.858928 |
| 0.63             | 1.877610 |
| 0.64             | 1.896481 |
| 0.65             | 1.915541 |
| 0.66             | 1.934792 |
| 0.67             | 1.954237 |

3. a) From the following table, find x, correct to two decimal places, for which y is maximum and find this value of y.

| +1 m - 44 | ******* |
|-----------|---------|
| Ton       | Phone:  |
| 1.2       | 0.9320  |
| 1.3       | 0.9636  |
| 1.4       | 0.9855  |
| 1.5       | 0.9975  |
| 1.6       | 0.9996  |

(5)

- b) Discuss about the total error of the trapezoidal formula and derive it.
- c) Calculate the first and second derivative of the function at x = 1.6 from the following table and also estimate the errors in the values of  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  at x = 1.6.

| 1962 1673 | i at x |
|-----------|--------|
| 1.0       | 2.7183 |
| 1.2       | 3.3201 |
| 1.4       | 4.0552 |
| 1.6       | 4.9530 |
| 1.8       | 6.0496 |
| 2.0       | 7.3891 |
| 2.2       | 9.0250 |

(15)

(5)

OR

- d) Evaluate  $\frac{10}{0} \frac{ds}{1+x^2}$  by using (i) Trapezoidal rule (ii) Simpson's 1/3 rule and (iii) Simpson's 3/8 rule with h = 1.
- 4. a) Solve the system of equations 2x + y + z = 10; 3x + 2y + 3z = 18 and x + 4y + 9z = 16 using Gauss elimination method.

OF

- b) Compute the inverse of the matrix  $A = \begin{pmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$ . (5)
- c) Solve the equations 2x + 3y + z = 9; x + 2y + 3z = 6 and 3x + y + 2z = 8 by LU decomposition. (15)

OR

- d) Solve by Jacobi iteration method the system of equations 8x 3y + 2z = 20; 4x + 11y z = 33 and 6x + 3y + 12z = 35. (15)
- 5. a) Given the differential equation  $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$  with the initial condition y = 0 when x = 0, use Picard's method to obtain y for x = 0.25 correct to three decimal places. (5)
  - b) From the Taylor series for y(x), find y(0.1) correct to three decimal places if y(x) satisfies  $y' = x y^2$  and y(0) = 1.
  - Given  $\frac{dy}{dx} = 1 + y^2$ , where y = 0 when x = 0, find y(0.2), y(0.4) and y(0.6) using Runge-Kutta method of fourth-order. (15)

OR

d) Solve  $\frac{dy}{dx} = 1 - y$ , y(0) = 0 in the range 0  $x \le 0.3$  using (i) Euler's method and (ii) Modified Euler's method by choosing h = 0.1. (15)

\*\*\*\*\*\*\*\*\*

