B.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - NOVEMBER 2016

MT 4200 - ADVANCED MATHEMATICS FOR PHYSICS

Date: 11-11-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART - A

Answer ALL questions.

1. State Bernoulli's formula.
2. Write any two properties of definite integral.
3. Solve $\left(D^{2}+4 D+4!y=0\right.$.
4. Define exact differential equation.
5. State the relation between Beta and Gamma integral.
6. If $u=(x-y)(y-z)(z-x)$, then prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$.
7. Find a unit vector normal to the surface $x^{2}+y^{2}-z=10$ at $(1,1,1)$.
8. State Greens theorem.
9. Define a cyclic group.
10. Define Kronecker's delta.

> PART - B

Answer any FIVE questions.
11. Solve $\int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{\frac{3}{2}}}{(\sin x)^{\frac{3}{2}}+(\cos x)^{\frac{3}{2}}} d x=\frac{\pi}{4}$.
12. Evaluate $\int x^{4} \sin x d x$.
13. Solve $\frac{d y}{d x}+y \cos x=\frac{1}{2} \sin 2 x$.
14. Solve $\left(D^{2}+16\right) y=\cos 4 x$.
15. Change the order of integration and hencelevaluate $\int_{1}^{3} \int_{y=0}^{\frac{6}{x}} x^{2} d y d x$.
16. Find div curl \vec{F} if $\vec{F}=x^{2} y \vec{l}+x z \vec{\jmath}+2 y z \vec{k}$.
17. Show that the union of two subgroups of G is a subgroup iff one is contained in other.
18. Evaluate $\int \sqrt{2 x^{2}-7 x+5} d x$.
PART - C

Answer any TWO questions.
19. (a) Find the Fourier series to represent $x-\pi$ in the interval $(-\pi, \pi)$.
(b) Find a sine series for $f(x)=c$ in the range 0 to π.
20. Solve $\left(D^{2}+4 D+5\right) y=e^{x}+x^{3}+\cos 2 x$.
21. (a) By transforming into polar coordinates, evaluate $\iint \frac{x^{2} y^{2}}{x^{2}+y^{2}} d x d y$ over the annular region between the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}(b>a)$.
22. (a) Verify Gauss divergence theorem for $\vec{F}=4 x z \vec{\imath}-y^{2} \vec{j}+y z \vec{i}$ over the cube bounded by $x=$ $0, x=1, y=0, y=1, z=0, z=1$.
(b) If A_{i} and B_{j} are covariant vectors. Show that $A_{i} B_{j}$ is a covariant tensor of order 2

