B.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - NOVEMBER 2016

MT 4203-ADVANCED MATHEMATICS FOR PHYSICS

Date: 11-11-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Part A

Answer ALL the questions
$(10 \times 2=20)$

1. Evaluate $\int \frac{d x}{a^{2}-x^{2}}$.
2. Define Fourier series.
3. Solve $\left(D^{2}+5 D+6\right) y=0$.
4. Write down the transformation from Cartesian to polar co-ordinates.
5. Find the particular integral of $\left(3 D^{2}+D-14\right) y=13 e^{2 x}$
6. State the relation between Beta and Gamma function.
7. Prove that the vector $\bar{f}=(x+3 y) \bar{\imath}+(y-3 z) \bar{\jmath}+(x-2 z) \bar{k}$ is solenoidal.
8. State Stokes theorem.
9. Define group.
10. Define Kronecker's delta.

Part B

Answer any FIVE questions
11. Evaluate $\int x^{3} \cos 2 x d x$.
12. Find a sine series for $f(x)=x$ in the range 0 to π.
13. Solve $\left(D^{2}+D+1\right) y=x^{2}$.
14. Solve $\frac{d y}{d x}+y \cos x=\frac{1}{2} \sin 2 x$.
15. Evaluate $\iint_{R} x y d x d y$, where R is the region in the first quadrant bounded by the hyperbolas $x^{2}-y^{2}=a^{2}$ and $x^{2}-y^{2}=b^{2}$ and the circles $x^{2}+y^{2}=c^{2}$ and $x^{2}+y^{2}=d^{2}(0<a<$ $b<c<d$).
16. Solve $d y-y d x=\sqrt{x^{2}+y^{2}} d x$.
17. If $\bar{F}=x y^{2} \bar{\imath}+2 x^{2} y z \bar{\jmath}-3 y z \bar{k}$, find div \bar{F} and $\operatorname{curl} \bar{F}$ at $(1,-1,1)$.
18. Prove that $\{1,-1, i,-i\}$ is an abelian multiplicative finite group of order 4.

Part C

Answer Any TWO Questions.

$$
(2 \times 20=40)
$$

19. (a) Find the Fourier series to the function $f(x)=\frac{1}{2}(\pi-x)$ in the interval $(0,2 \pi)$.
(b) Derive the relationship between Beta and Gamma functions.
20. Solve $\left(D^{2}+4 D+5\right) y=e^{x}+x^{3}+\cos 2 x$.
21.(a) Evaluate $\iint x y d x d y$ taken over the positive quadrant of the circle $x^{2}+y^{2}=a^{2}$.
(b) Change the order of integration and evaluate $\int_{0} \int_{x^{2} / 4 a} d y d x$.
22.(a) Verify Green's theorem for $\int_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the boundary of the region $x=0, y=0, x+y=1$.
(b) Define cyclic group and prove that every cyclic group is abelian.
