LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FOURTH SEMESTER - NOVEMBER 2016

MT 4503 - ALGEBRAIC STURUCTURE - I

Date: 04-11-2016
Time: 01:00-04:00

PART - A

Answer ALL the questions:
(10 $\times 2=20$ marks $)$

1. Define an equivalence relation and give an example.
2. Prove that in a group G, the identify element is unique.
3. Show that every cyclic group is abelian.
4. Define a normal subgroups of a group.
5. State the fundamental homomorphism theorem.
6. It G is a group of order 2 , prove that the only automorphism of G is the identify map.
7. Define an integral domain.
8. Give an example of a subring in a ring R, Which is not an ideal of R.
9. Give an example of an Euclidean ring.
10. What are Gaussian integers?

PART - B

Answer any FIVE questions:
($5 \times 8=40$ marks)
11. Prove that if H and K are subgroups's of G , then HK is a subgroup of G if and only if $\mathrm{HK}=\mathrm{KH}$.
12. Show that every subgroup of a cyclic group is cyclic.
13. Show that every group of prime order is cyclic.
14. State and prove Lagrange's theorem.
15. Prove that any permutation of a finite set can be expressed as a product of transpositions.
16. Show that every finite integral domain is a field.
17. Show that every Euclidean ring is a principal ideal domain.
18. Find a greatest common division of $\mathrm{a}=14-3 \mathrm{i}$ and $\mathrm{b}=4+7 \mathrm{i}$ and represent in the form $\lambda a+\mu b$ in Z(i).
PART - C

Answer any TWO questions:

$$
(2 \times 20=40 \text { marks })
$$

19. a) Let H and K are subgroups of G , Show that $O(H K)=\frac{O(H) O(K)}{O(H \cap K)}$.
b) Show that union of two subgroups of a group G is a subgroup of G if and only if one is contained in the other.
20. a) Show that every subgroups of an abelian subsgroup is normal.
b) Is the intersection of two normal subgroups of G a normal subgroup of G? Justify.
c) State and prove the fundamental theorem of group homomorphism.
21. a) Prove that every group is isomorphic to a group of permutations.
b) If R is a commutative ring with unit element whose only ideals are (0) and R itself, show that R is a field.
22. a) Let R be a commutative ring work unity and P an ideal of R . Then prove that P is a prime ideal of R of and only if R / P is an integral domain.
b) If $a=14-3 i$ and $b=4+7 i$, find Gaussian integers q and r such that $a=q b+r$, where $\mathrm{r}=0$ or $\mathrm{d}(\mathrm{r})<\mathrm{d}(\mathrm{b})$.
