B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - NOVEMBER 2016

MT 5406 - COMBINATORICS

Date: 09-11-2016
Time: 09:00-12:00
\square
Dept. No.
Max. : 100 Marks

SECTION-A

ANSWER ALL THE QUESTIONS

($10 \times 2=20$)

1. What is called an n-letter word or word of length n ?
2. State exclusion principle.
3. Find the sequence of ordinary generating functions $2 x^{2}(1-x)^{-1}$ and $(3+x)^{3}$.
4. Define exponential generating functions?
5. State multinomial theorem.
6. Find the coefficient of $x_{1}^{2} x_{3} x_{4}{ }^{3} x_{5}{ }^{4}$ in $\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)^{10}$.
7. Find the rook polynomial for the chess board c given below
8. Define Euler's

function?
9. Define G-equivalence between two sets?
10.Define circular words of length n ?

SECTION-B

ANSWER ANY FIVE QUESTIONS

11.There are 30 females, 35 males in a junior class while there are 25 females and 20 males in a senior class. In how many ways can a committee e of 10 be chosen, so that there are exactly 5 females and 3 juniors in the committee?
12.Formulate a table for $\mathrm{S}_{\mathrm{n}}{ }^{\mathrm{m}}$ for $1 \leq \mathrm{m} \leq 51 \leq \mathrm{n} \leq 5$, using sterling formula of first kind.
13.Derive Pascal's identity using the concept of generating functions?
14.Derive the formula for the sum of n natural numbers using recurrence formula.
15.Determine the coefficient of x^{27} in (i) $\left(x^{4}+x^{5}+x^{6}+\ldots . . .\right)^{5}$;
(ii) $\left(x^{4}+2 x^{5}+3 x^{6}+\ldots \ldots .\right)^{5}$.
16.Define permanent of a matrix and find the permanent of $B=\left[\begin{array}{llll}2 & 2 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 1\end{array}\right]$.
17. Find the rook polynomial for 4 X 4 chess board by the use of expansion formula. 18.State and prove Polya's enumeration theorem?

SECTION-C

ANSWER ANY TWO QUESTIONS

19. a) Prove that the number of distributions of n distinct objects into m distinct boxes with the objects in the each box arranged in a definite order is $[m]^{n}$.
b) Define stirling numbers of second kind. Formulate a table for $s_{n}{ }^{m}$ for $1 \leq m, n \leq 6$.
20. a) State and prove Sieves formula.
b) How many integers 1 and 300 are divisible by (i) at least 3, 5, 7; (ii) 3 and 5 but not 7 ; (iii) 5 but neither by 3 nor 7 .
21. State and solve ménage problem.
22. a) Let G be symmetric group of a square with vertices labeled as $1,2,3 \& 4$ clockwise find the elements of G and the cycle index of G .
b) State and prove Burnside Frobenius theorem.
