LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - NOVEMBER 2016

MT 5407 - FORMAL LANGUAGES AND AUTOMATA

Date: 09-11-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART-A

Answer ALL the questions:

1. Define the language accepted by an NFA.
2. Draw a DFA accepting the set of all strings over $\{0,1\}$ with three consecutive zero's.
3. Prove that any finite subset is regular.
4. Define context-sensitive language.
5. Define ambiguous grammar and give an example.
6. Show that $L=\left\{a^{p}: p\right.$ is a prime $\}$ is not regular.
7. Define an -free homomorphism.
8. Write a grammar for the language $L=\left\{\begin{array}{ll}a^{n} b^{n} / n & 1\end{array}\right\}$.
9. Define the language star.
10. Define Greibach normal form.

PART-B

Answer any FIVE questions:
11. Construct a finite automaton M accepting $\{a b, b a\}$.
12. Draw the state diagram representing the (NFA) given in the table, where M is given by $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\},, q_{0},\left\{q_{3}\right\}\right)$

δ	0	1
q_{0}	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$
q_{1}	$\left\{q_{3}\right\}$	ϕ
q_{2}	ϕ	$\left\{q_{3}\right\}$
q_{3}	$\left\{q_{3}\right\}$	$\left\{q_{3}\right\}$

13. Prove that union of two regular set is regular.
14. Let $G=\{N, T, P, S\} N=\{S, B\}$ and $T=\{a, b, c\}$. P consists of the following productions:
(i) $S \rightarrow a S B$
(iii) $b B \rightarrow b b c$
(ii) $S \rightarrow a b c$
(iv) $c B \rightarrow B c$

Then show that $L(G)=\left\{a^{n} b^{n} c^{n} / n \quad 1\right\}$ is a CSL.
15. Let $G=\{N, T, P, S\}$, where $N=\{S, A\} T=\{a, b\}$ and P consists of the rules

1. $S \rightarrow a A b$
2. $S \rightarrow a b S b$
3. $S \rightarrow a$
4. $A \rightarrow b S$
5. $A \rightarrow a A A b$

Find the leftmost and rightmost derivations for the string $a b a b$.
16. Prove that the families of $P S L, C S L, C F L$ and $R L$ are closed under union.
17. Consider the grammar $G=\{N, T, P, S\}$ where
$N=\left\{S,\left(P_{r}\right),(V P), V,(N P), A, N,(\right.$ Aux $\left.), P\right\}, T=\{$ They, are, flying, planes $\}$, $P=\begin{array}{cccccc}S & \left(P_{r}\right)(V P), P_{r} & \text { They, } V P & (V)(N P), V & \text { are, } N P & (A)(N), \\ A & \text { flying } N\end{array} \quad$ planes, $V \quad(A u x)(P), A u x \quad$ are $N P \quad N P$ $A \quad$ flying, N planes, $V \quad(A u x)(P), A u x \quad$ are, $N P \quad N, P \quad$ flying , and S is the start symbol, generates the language consisting of the single sentence,
\{They are flying planes $\}$.
18. Prove that $L(G)=\left\{a^{n} b^{n} c^{n} / n \quad 1\right\}$ is not a Context Free Language (CFL).

PART - C

Answer any TWO questions:

19. Let $\quad M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\},, q_{0},\left\{q_{1}\right\}\right)$ is a finite automaton δ is given by

$$
\begin{aligned}
& \left(q_{0}, a\right)=q_{1}, \quad\left(q_{1}, a\right)=q_{3} \quad\left(q_{2}, a\right)=q_{2}, \quad\left(q_{3}, a\right)=q_{2}, \quad\left(q_{0}, b\right)=q_{2}, \quad\left(q_{1}, b\right)=q_{0} \\
& \left(q_{2}, b\right)=q_{2}, \quad\left(q_{3}, b\right)=q_{2}
\end{aligned}
$$

(a) Represent M by its state table.
(b) Represent M by its state diagram.
(c) Which of the following strings are accepted by M ?
(i) $a b a b a$ (ii) $a a b b a$ (iii) $a a a a b$ (iv) $b b b a a$
$(6+6+8)$
20. (i) State and prove the pumping lemma.
(ii) Construct a deterministic finite automaton (FA) equivalent to a given NFA where,
$M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\},, q_{0},\left\{q_{3}\right\}\right), \quad$ is given in the following table:

δ	a	b
q_{0}	$\left\{q_{0}, q_{1}\right\}$	$\left\{q_{0}\right\}$
q_{1}	ϕ	$\left\{q_{2}\right\}$
q_{2}	ϕ	ϕ

21. (i) Let $G=(\{\mathrm{S}, Z, A, B\},\{a, b\}, P, S)$ where P consists of the following productions:
22. $S \rightarrow a S A$
23. $S \rightarrow a Z A$
24. $Z \rightarrow b Z B$
25. $Z \rightarrow b B$
26. $B A \rightarrow A B$
27. $A B \rightarrow A b$
$7 . b B \rightarrow b b$
28. $b A \rightarrow b a$
29. $a A \rightarrow a a$

Then show that $L(G)=\left\{a^{n} b^{m} a^{n} b^{m} / n, m \geq 1\right\}$.
(ii) Prove that the family of CFL is closed under substitution.
22. (i) State and prove Chomsky Normal form.
(ii) Let $L=\left\{a^{n} b^{n} / n \quad 1\right\}$, then $G=\{N, T, P, S\}$ where $N=\{S\}, T=\{a, b\}$ and $P=\{S \quad a S b, S \quad a b\}$, verify Chomsky normal form and generates context-free language.
(10+10)

