LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2016
MT 5408-GRAPH THEORY

Date: 11-11-2016
Time: 09:00-12:00
\square Max. : 100 Marks

PART - A

Answer ALL questions

1. Define a bipartite graph with example.
2. Define removal of the vertices with example.
3. When a $v_{n}-v_{0}$ walk is said to be closed?
4. Define distance between any two vertices of a graph.
5. Define an Eulerian graph and given an example.
6. Prove that every Hamiltonian graph is 2-connected.
7. Define a spanning tree with examples.
8. Define an eccentricity of a vertex v in a connected graph G.
9. Show that $K_{3,3}$ is not planar.
10. Find the chromatic number for the following graphs.

(a)

(b)

PART - B

Answer any FIVE questions

11. (a) Prove that any graph G the number of vertices of odd degree is even.
(b) Prove that $\Gamma(G)=\Gamma(\bar{G})$.
12. If Let G_{1} be a (p_{1}, q_{1}) graph and G_{2} be a $\left(p_{2}, q_{2}\right)$ graph then prove that
(i) $G_{1}+G_{2}$ is a ($p_{1}+p_{2}, q_{1}+q_{2}+p_{1} p_{2}$) graph.
(ii) $G_{1} \times G_{2}$ is a $\left(p_{1} p_{2}, q_{1} p_{2}+q_{2} p_{1}\right)$ graph.
13. Define connected graph and prove that a graph G with P vertices and $\delta \geq \frac{p-1}{2}$ is connected.
14. (a) Define cut vertex with examples.
(b) Prove that every non - trivial connected graph has atleast two vertices which are not cut vertex.
15. If G is a graph with $p \geq 3$ vertices and $\delta \geq^{p} / 2$, then prove that G is Hamiltonian.
16. Prove that every planar graph is 5 -colourable.
17. State and prove Euler's theorem.
18. (a) If G is a (p, q) plane graph with r faces and k components then prove that $p-q+r=k+1$.
(b) If G is a connected (p, q) planar graph with no triangle and $p \geq 3$, then prove that $q \leq 2 p-4$.

PART - C

Answer any TWO question
19. (a) Show that in a group of two or more people there are always two with exactly same number of friends inside the room
(b)The maximum number of edges among all p vertex graphs with no triangles is $\frac{p^{2}}{4} . \quad(6+14)$
20. (a) Prove that any self complementary graph has $4 n$ or $4 n+1$ vertices.
(b) Prove that a graph G with atleast two vertices is bipartite iff all its cycle are of even length.
21. (a) Prove that the following statements are equivalent for a connected graph G
(i) G is eulerian.
(ii) Every point of G has even degree.
(iii)The set of edges of G can be partitioned into cycles.
(b) If G is a graph in which the degree of every vertex is atleast two then prove that G is contains a cycle.
22. (a) Let G be a (p, q) graph then prove that the following statements are equivalent
(i) G is a tree.
(ii) Every two points of G are joined by a unique path.
(iii) G is connected and $p=q+1$.
(iv) G is acyclic and $p=q+1$.
(b) Prove that every non - trivial tree has atleast two vertices of degree one.

