LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

FIFTH SEMESTER - NOVEMBER 2016
MT 5507/MT 5504 - OPERATIONS RESEARCH

Date: 03-11-2016
Time: 09:00-12:00
\square Max. : 100 Marks

> PART - A

ANSWER ALL QUESTIONS

1. Define optimal feasible solution.
2. What are the essential characteristics of operations research?
3. What is transportation problem?
4. What is an unbalanced assignment problem?
5. Define saddle point in a game.
6. What types of games are solved graphically?
7. Write any two differences between PERT and CPM.
8. Define critical path in a network.
9. What is Economic order quantity?
10. What is shortage cost?
PART - B

ANSWER ANY FIVE QUESTIONS.
11. Solve graphically: Minimise $z=5 x_{1}+4 x_{2}$ subject to the conditions $x_{1}-2 x_{2} \leq 1, x_{1}+2 x_{2} \geq 3 x_{1}, x_{2} \geq 0$.
12. Solve by simplex method: Maximise $z=x_{1}+2 x_{2}+x_{3}$ subject to the conditions

$$
2 x_{1}+x_{2}-x_{3} \leq 2,-2 x_{1}+x_{2}-5 x_{3} \geq-6,4 x_{1}+x_{2}+x_{3} \leq 6,, x_{1}, x_{2}, x_{3} \geq 0 .
$$

13. Find an initial solution by North West Corner Rule method:

	D_{1}	D_{2}	D_{3}	
$\mathrm{~S}_{1}$	6	10	15	2
$\mathrm{~S}_{2}$	4	6	16	5
$\mathrm{~S}_{3}$	12	5	8	9
	1	8	7	16

14. Solve the assignment problem:

	M_{1}	M_{2}	M_{3}	M_{4}
$\mathrm{~J}_{1}$	5	26	13	15
$\mathrm{~J}_{2}$	3	9	18	3
$\mathrm{~J}_{3}$	10	7	3	2
$\mathrm{~J}_{4}$	5	11	9	7

15. Solve the following game:

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	1	7	3	4
$\mathrm{~A}_{2}$	5	6	4	5
$\mathrm{~A}_{3}$	7	2	0	3

16. Solve the following game using graphical method
PlayerB

$$
\text { Player } A\left[\begin{array}{cc}
-6 & 7 \\
4 & -5 \\
-1 & 2 \\
-2 & 5 \\
7 & -6
\end{array}\right]
$$

17. Discuss the shortest route problem.
18. The demand for an item is 100 units per day. For placing an order a cost of Rs. 400 is incurred. Unit Cost is Rs.10. Holding cost is Rs. 0.08 per day. Determine the EOQ and time between two orders.
PART - C

ANSWER ANY TWO QUESTIONS.

19. Solve by Big-M method: Maximize $z=x_{1}+2 x_{2}$ subject to the conditions $x_{1}-x_{2} \geq 3, \quad 2 x_{1}+x_{2} \leq 10, \quad x_{1}, x_{2} \geq 0$.
20. Solve the following transportation problem:

	M_{1}	M_{2}	M_{3}	M_{4}	
$\mathrm{~W}_{1}$	8	10	7	6	50
$\mathrm{~W}_{2}$	12	9	4	7	40
$\mathrm{~W}_{3}$	9	11	10	8	30
	25	32	40	23	120

21. a) Solve the following game: $\left(\begin{array}{cccc}5 & -10 & 9 & 0 \\ 6 & 7 & 8 & 1 \\ 8 & 7 & 15 & 1 \\ 3 & 4 & -1 & 4\end{array}\right)$
b) What is the maximal flow problem? Explain in detail with diagram.
c) What is the difference between transportation and assignment problem?
22. a) What is price break in inventory control? Is it advisable to accept always the price break?
b) Define spanning tree in a network.
c) Find the critical path of a project having the tasks as given below:

Job	Time	Job	Time
$(1,2)$	2	$(5,8)$	5
$(2,3)$	7	$(6,7)$	8
$(2,4)$	3	$(6,10)$	4
$(3,4)$	3	$(7,9)$	4
$(3,5)$	5	$(8,9)$	1
$(4,6)$	3	$(9,10)$	7

