LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - NOVEMBER 2016

MT 5508/MT 5502 - LINEAR ALGEBRA

Date: 17-11-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL questions:

1. Show that the vectors $(0,1,1),(0,2,2)$ and $(1,5,3)$ in R^{3} are linearly independentent over R.
2. Is the union of subspaces a subspace? Justify.
3. Define rank and nullity of a vector space homomorphism $T: U \rightarrow V$, where U and V are vector spaces over a field F .
4. For a homomorphism $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$, prove that Kernal of T is a subspace of V .
5. Define an inner product space.
6. Let $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ and $\lambda \in \mathrm{F}$. If λ is an eigen value of T , prove that $\lambda \mathrm{I}-\mathrm{T}$ is singular.
7. Show that the matrix $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ is orthogonal.
8. If A and B are Hermitian, then show that $\mathrm{AB}-\mathrm{BA}$ is skew Hermitian.
9. If $\mathrm{T} \in \mathrm{A}(\mathrm{V})$ is Hermitian, then show that all its eigen values are real.
10. Find the rank of the matrix $A=\left(\begin{array}{ccc}1 & 5 & -7 \\ 3 & 8 & 5\end{array}\right)$ over the field of rational numbers.

Answer any FIVE questions:
11. Prove that the intersection of two sub-spaces of a vector space V is a subspace of V .
12. Give a characterization of a nonempty subset W of a vector space V over F to be a subspace of V.
13. Express the vector $(1,-2,5)$ as a linear combination of the vectors $(1,1,1),(1,2,3)$ and $(2,-1,1)$ in R^{3}.
14. If V is a vector space of finite dimension and W is a subspace of V , then prove that $\operatorname{dim} \mathrm{V} / \mathrm{W}=\operatorname{dim} \mathrm{V}-\operatorname{dim} \mathrm{W}^{\prime}$.
15. For any two vectors u, v in V , prove that $\|u+v\| \leq\|u\|+\|v\|$.
16. Show that $T: R^{2} \rightarrow R^{2}$ depend by $T(a, b)=(a+b, a)$ is a vector space homomorphism.
17. Show that any square matrix can be expressed as a sum of a symmetric matrix and a skew symmetric matrix.
18. Show that the system of equations $x_{1}+2 x_{2}+x_{3}=11$, and $4 x_{1}+6 x_{2}+5 x_{3}=8$ and $2 x_{1}+2 x_{2}+3 x_{3}=19$ is inconsistent.
19. If W_{1} and W_{2} are subspaces of a finite dimensional vector space, then prove that $\operatorname{dim}\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)=\operatorname{dim}$ $\mathrm{W}_{1}+\operatorname{dim} \mathrm{W}_{2}-\operatorname{dim}\left(\mathrm{W}_{1} \cap \mathrm{~W}_{2}\right)$.
20. If U and V are vector spaces over F and it $T: U \rightarrow V$ is a homomorphism with kernel W, then prove that $\mathrm{U} / \mathrm{W} \cong \mathrm{V}$.
21. Apply the Gram - Schmidt orthonomalization process to obtain an orthonormal basis for the subspace of R^{4} generated by the vectors $(1,1,0,1),(1,-2,0,0)$ and $(1,0,-1,2)$.
22. a) Prove that the linear transformation T on V is unitary it and only it takes an orthonormal basis of V onto an orthonormal basis of V .
b) Solve $x_{1}+2 x_{2}+x_{3}+5 x_{4}=3$

$$
\begin{array}{r}
x_{1}+2 x_{2}+2 x_{3}+7 x_{4}=4 \tag{10+10}\\
x_{3}+2 x_{4}=1 \\
x_{1}+x_{2}+3 x_{4}=2
\end{array}
$$

