Date: 16-11-2016
Time: 01:00-04:00

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - NOVEMBER 2016
MT 6603/MT 6600 - COMPLEX ANALYSIS

Dept. No. \square Max. : 100 Marks

PART-A

ANSWER ALL THE QUESTIONS:
(10x2=20marks)

1. Prove that the function $\mathrm{f}(\mathrm{z})=\bar{z}$ is nowhere differentiable.
2. Define harmonic functions.
3. State Liouville's theorem.
4. Using Cauchy's Integral formula, evaluate $\frac{1}{2 \pi i} \int_{C} \frac{z^{2}+5}{z-3} d z$ where C is $|\mathrm{z}|=4$.
5. Find the poles of $f(z)=\frac{z^{2}-2 z+3}{z-2}$
6. State Maximum Modulus theorem.
7. Find the residue of $\frac{z e^{z}}{(z-1)^{3}}$ at its poles.
8. What are the different types of singularities?
9. Define conformal mapping
10. Define a bilinear transformation.

PART-B

ANSWER ANY FIVE QUESTIONS:
(5x8=40marks)
11. Prove that $f(z)=\sin x \cosh y+i \cos x \sinh y$ is differentiable at every point.
12. Evaluate $\int_{C} \frac{e^{z}}{(z+2)(z+1)^{2}} d z$ where C is $|z|=3$.
13. State and prove fundamental theorem of algebra.
14. Let $f(z)$ be a function having a as an isolated singularpoint. Then prove that the following are equivalent.
i) $\quad a$ is a pole of order r for $f(z)$.
ii) $\quad f(z)$ can be written in the form $f(z)=\frac{1}{(z-a)^{r}} \theta(z)$ where $\theta(z)$ has a removable singularity at $z=a$ and $\lim _{z \rightarrow a} \theta(z) \neq 0$.
iii) $\quad a$ is a zero of order r for $\frac{1}{f(z)}$.
15. State and prove Rouche's theorem.
16. Evaluate by using Cauchy's integral formula $\int_{C} \frac{z+1}{z^{2}+2 z+4} d z$ where \bar{C} is the circle $|z+1+i|=2$
17.Prove that any bilinear transformation can be expressed as a product of translation, rotation, magnification or contraction and inversion.
18. Find the bilinear transformation which maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$ onto $w_{1}=1, w_{2}=i, w_{3}=-1$ respectively.

PART-C

ANSWER ANY TWO QUESTIONS:

($2 \times 20=40 \mathrm{marks}$)
19. a) Derive C.R equations in polar coordinates.
b) If $f(z)$ is analytic prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
20. a) State and prove Cauchy's integral theorem.
b) Evaluate $\int_{C}\left(\frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)}\right)$ where C is the circle $|z|=3$.
21. a) State and prove Laurent's theorem.
b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$.
22. a) Using the method of contour integration evaluate $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$
b) Find the bilinear transformation which maps $-1,0,1$ of the z-plane onto $-1,-i, 1$ of the w-plane. Show that under this transformation the upper half of the w-plane maps onto the interior of the unit circle.

