LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - NOVEMBER 2016
MT 6606 - COMPLEX ANALYSIS
(FROM 12-BATCH)
Date: 14-11-2016
Time: 09:00-12:00 \square Max. : 100 Marks

> PART - A

Answer ALL questions. Each questions carries 2 marks
(10 x $2=20$ marks)

1. Give an example of a function that has infinite limit at ∞.
2. Find an analytic function whose real part is $x^{2}-y^{2}$.
3. Define Cross Ratio.
4. Find the fixed points of the transformation $w=\frac{1}{z}$.
5. Evaluate $\int_{C} \frac{d z}{z-a}$, where C is a circle with centre ' a ' and radius r units.
6. State Cauchy's inequality.
7. Find the singular points of $f(z)=\frac{1}{\sin z}$.
8. Obtain the Taylor's series expansion of $f(z)=\cos z$ about $z=\frac{\pi}{2}$.
9. Find the residue of $f(z)=\frac{z-2}{z(z-1)}$, about $\mathrm{z}=0$.
10. Write down the formula for evaluating the residue at a pole of order 1 .
PART - B

Answer any FIVE questions: Each question carries 8 marks
11. Derive the Cauchy - Rieimann equations in polar form.
12. If $f(z)$ is regular and harmonic function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left[\left|f^{\prime}(z)\right|\right]=0$.
13. Find the linear fractional transformation which maps the points $-1,0,1$ onto the points $-i, 1, i$,
14. Show that $\int_{C_{1}} \bar{z} d z=-\pi i$, where C_{1} is the upper half of the circle with centre at origin and radius 1 unit.
15. State and prove Lioville's theorem.
16. Obtain the Laurent's series expansion of $f(z)=\frac{z}{(z-1)(z-3)}$, valid in $0<|z-1|<2$.
17. State and prove Argument theorem.
18. Using residue theorem, prove that $\int_{C} \frac{5 z-2}{z(z-1)} d z=10 \pi i$, where C is $|z|=2$.

Answer any TWO questions. Each questions carries 20 marks
19. a) Show that the function $f(z)=e^{-z^{-4}}, z \neq 0$

$$
f(0)=o \text {, is not analytic at } \mathrm{z}=0,
$$

although Cauchy - Riemann equations are satisfied at the point.
b) If $f(z)=u+i v$ and $u-v=\mathrm{e}^{x}(\cos y-\sin y)$ find $f(\mathrm{z})$ interms of z .
20. a) Prove that the cross ratios are preserved under bilinear transformation.
b) If $f(a)=\int_{C} \frac{3 z^{2}+7 z+1}{(z-a)} d z$, where C is the positively oriented circle $|z|=2$, find the values of $f^{\prime}(1-i), f^{\prime \prime}(1-i)$.
21. a) State and prove Laurent's theorem.
b) State and prove Cauchy's residue theorem.
22. a) Using Contour integration, show that $\int_{0}^{2 \pi} \frac{d \theta}{1+a \sin \theta}=\frac{2 \pi}{\sqrt{1-a^{2}}},(-1<a<1)$.
b) Prove that all the roots of $z^{7}-5 z^{3}+12=0$ lie between the circle $|z|=1$ and $|z|=2$.

