LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
1	M.Sc. DEGREE EXAMINATION – MATHEMATICS		
	FIRST SEMESTER – NOVEMBER 2023		
6	PMT1MC01 – LINEAR ALGEBRA		
]	Date: 31-10-2023 Dept. No. Max. : 100 Marks		
,	Time: 01:00 PM - 04:00 PM		
	SECTION A – K1 (CO1)		
	Answer ALL the questions $(5 \times 1 = 5)$		
1	Answer the following.		
a)	What is the characteristic polynomial of $\begin{bmatrix} 2 & 3 & 7 \\ 0 & 4 & 8 \\ 0 & 0 & -1 \end{bmatrix}$.		
b)	Write the minimal polynomial of $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$.		
c)	Give an example for a T admissible subspace.		
d)	Define cyclic vector.		
e)	Find an Inner product on R^3 .		
	SECTION A – K2 (CO1)		
	Answer ALL the questions $(5 \times 1 = 5)$		
2	Choose the correct answer.		
a)	Let A be a real matrix of order 3 such that $A^2 = A$. Then possible eigen values of A are i) 0,1 ii) 2, 1 iii) 3, 1, -1 iv) 1, 2, 3		
1.)	Roots of a minimal polynomial of a matrix A are		
b)	i) nonzero ii) integers iii) characteristic values iv) characteristic vectors		
	If an operator T on a vector space V is diagonalizable if there exists a basis of V containing		
c)	i) eigen values of Tii) eigen vectors of Tiii) unit vectorsiv) normal vectors		
	Let T be a linear operator on a finite dimensional vector space V and $\alpha \in V$ be a characteristic vector		
d)	of T. Then dimension of $Z(\alpha; T)$ is i) 1 ii) 2 iii) 0 iv) 0 or 1		
e)	In $R^2(\alpha \beta) = ax_1y_1 + bx_2y_2$ where $\alpha = (x_1, x_2), \beta = (y_1, y_2)$ is an inner product if i) $a = 2, b = -8$ ii) $a = 0, b = 3$ iii) $a = -7, b = 4$ iv) $a = 10, b = 3$		
	SECTION B – K3 (CO2)		
	Answer any THREE of the following(3 x 10 = 30)		
	Let T be a linear operator on a finite-dimensional space V and let c be a scalar. Then prove that that following are equivalent.		
3	(i) c is a characteristic value of T.		
	(ii) The operator $(T - cI)$ is singular.		
4	(iii) det $(T - cI) = 0$ Write about the matrix of a projection operator.		
4 5	Write any four properties of nilpotent operators		
6	Let <i>T</i> be a linear operator on R^2 defined by $T(x, y) = (0, x)$. Find a cyclic vector and a non cyclic vector of <i>T</i>		

7	State and prove any four properties of an adjoint operator.	
	SECTION C – K4 (CO3)	
	Answer any TWO of the following (2 x 12.5 = 25)	
8	State and prove primary decomposition theorem	
	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V . Then	
9	show that T is triangulable if and only if the minimal polynomial for T is a product of linear	
-	polynomials over F	
	If $V = W_1 \oplus \ldots \oplus W_k$, then prove that there exist k linear operators E_1, \ldots, E_k on V such that i) each E_i is a projection.	
10	ii) $E_i E_j = 0$, if i \neq j;	
	iii) $I = E_1 + \ldots + E_k$;	
	iv) the range of E_i is W_i . Also discuss about the converse.	
11	Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V	
11	and $\alpha \in V$. Discuss about the relation between T – annihilator of α and $Z(\alpha; T)$	
	SECTION D – K5 (CO4)	
	Answer any ONE of the following (1 x 15 = 15)	
12	Diagonalize the matrix $A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$. Also, write the minimal polynomial for A	
13	Let T be a linear operator on the finite-dimensional vector space V over the field F. Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Then prove that there is a diagonalizable operator D on V and a nilpotent operator N on V such that (i) $T = D + N$; (ii) $DN=ND$	
	Also prove that the diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T.	
SECTION E – K6 (CO5)		
	Answer any ONE of the following $(1 \times 20 = 20)$	
14	Discuss about cyclic decomposition theorem.	
15	Create and analyse relations between nilpotent operator, rational form and Jordon canonical forms.	
15	Create and analyse relations between impotent operator, rational form and soldon canonical forms.	
	#######################################	