LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2023
PMT1MC01 - LINEAR ALGEBRA

Date: 31-10-2023
Time: 01:00 PM - 04:00 PM
Dept. No.
Max. : 100 Marks

SECTION A - K1 (CO1)

Answer ALL the questions
1 Answer the following.
a) What is the characteristic polynomial of $\left[\begin{array}{ccc}2 & 3 & 7 \\ 0 & 4 & 8 \\ 0 & 0 & -1\end{array}\right]$.
b) Write the minimal polynomial of $\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$.
c) Give an example for a T admissible subspace.
d) Define cyclic vector.
e) Find an Inner product on R^{3}.

> SECTION A - K2 (CO1)

Answer ALL the questions

2 Choose the correct answer.
a) Let A be a real matrix of order 3 such that $A^{2}=A$. Then possible eigen values of A are
i) 0,1
ii) 2,1
iii) $3,1,-1$
iv) $1,2,3$

Roots of a minimal polynomial of a matrix A are
b)
i) nonzero
ii) integers
iii) characteristic values
iv) characteristic vectors

If an operator T on a vector space V is diagonalizable if there exists a basis of V containing
c)
i) eigen values of T
ii) eigen vectors of T
iii) unit vectors
iv) normal vectors

Let T be a linear operator on a finite dimensional vector space V and $\alpha \in V$ be a characteristic vector
d) of T. Then dimension of $Z(\alpha ; T)$ is
i) 1
ii) 2
iii) 0
iv) 0 or 1
e)

In $R^{2}(\alpha \mid \beta)=a x_{1} y_{1}+b x_{2} y_{2}$ where $\alpha=\left(x_{1}, x_{2}\right), \beta=\left(y_{1}, y_{2}\right)$ is an inner product if
i) $a=2, b=-8$
ii) $a=0, b=3$
iii) $a=-7, b=4$
iv) $a=10, b=3$

SECTION B - K3 (CO2)

Answer any THREE of the following

$\mathbf{(3 \times 1 0 = 3 0)}$
Let T be a linear operator on a finite-dimensional space V and let c be a scalar. Then prove that that following are equivalent.
3 (i) c is a characteristic value of T .
(ii) The operator ($\mathrm{T}-\mathrm{cI}$) is singular.
(iii) $\operatorname{det}(\mathrm{T}-\mathrm{cI})=0$

4 Write about the matrix of a projection operator.
5 Write any four properties of nilpotent operators
Let T be a linear operator on R^{2} defined by $T(x, y)=(0, x)$. Find a cyclic vector and a non cyclic vector of T

7 State and prove any four properties of an adjoint operator.

SECTION C - K4 (CO3)

Answer any TWO of the following

8 State and prove primary decomposition theorem
Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V. Then
9 show that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F
If $V=W_{l} \oplus \ldots \oplus W_{k}$, then prove that there exist k linear operators E_{l}, \ldots, E_{k} on V such that
i) each E_{i} is a projection.
ii) $E_{i} E_{j}=0$, if i $\neq \mathrm{j}$;
iii $) I=E_{l}+\ldots+E_{k}$;
iv) the range of E_{i} is W_{i}. Also discuss about the converse.

Let V be a finite-dimensional vector space over the field F and let T be a linear operator on V and $\alpha \in V$. Discuss about the relation between T - annihilator of α and $Z(\alpha ; T)$

SECTION D - K5 (CO4)

Answer any ONE of the following
($1 \times 15=15$)
Diagonalize the matrix $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$. Also, write the minimal polynomial for A
Let T be a linear operator on the finite-dimensional vector space V over the field F. Suppose that the minimal polynomial for T decomposes over F into a product of linear polynomials. Then prove that there is a diagonalizable operator D on V and a nilpotent operator N on V such that
(i) $\mathrm{T}=\mathrm{D}+\mathrm{N}$;
(ii) $\mathrm{DN}=\mathrm{ND}$

Also prove that the diagonalizable operator D and the nilpotent operator N are uniquely determined by (i) and (ii) and each of them is a polynomial in T.

SECTION E - K6 (CO5)

Answer any ONE of the following

$(1 \times 20=20)$
14 Discuss about cyclic decomposition theorem.
15 Create and analyse relations between nilpotent operator, rational form and Jordon canonical forms.

