LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - NOVEMBER 2023

PMT1MCO2 - REAL ANALYSIS-I

Date: 03-11-2023
Time: 01:00 PM - 04:00 PM
Max. : 100 Marks

SECTION A - K1 (CO1)

Answer ALL the questions

1 Answer the following.
a) What is a closure of a set? Give one example.
b) Verify whether the function $f(x)=x^{2}+1$ satisfies mean value theorem in the interval $[1,4]$.
c) State the necessary and sufficient condition for $f \in \mathcal{R}(\alpha)$.
d) Define uniform convergence.
e) Why is the Weierstrass approximation theorem important?

SECTION A - K2 (CO1)
Answer ALL the questions
2 Choose the correct answer.
Let X be the metric space which is both complete and totally bounded then is said to be \qquad
(i) scalar
a) (ii) compact
(iii) complete
(iv) discrete

If f has a derivative at c then it is \qquad at c.
(i) Continuous
b) (ii) Bounded
(iii) closed
(iv) Neither or nor continuous

If $f_{1}(x) \leq f_{2}(x)$ on $[a, b]$ then \qquad
(i) $\int_{a}^{b} f_{2} d \alpha \leq \int_{a}^{b} f_{1} d \alpha$
c) (ii) $\int_{a}^{b} f_{2} d \alpha=\int_{a}^{b} f_{1} d \alpha$
(iii) $\int_{a}^{b} f_{1} d \alpha \leq \int_{a}^{b} f_{2} d \alpha$
(iv) $\int_{a}^{b} f_{2} d \alpha=-\int_{a}^{b} f_{1} d \alpha$

If $\left\{f_{n}\right\}$ is a sequence of continuous function on E and if $f_{n} \rightarrow f$ uniformly then f is
(i) Continuous
d) (ii) Discontinuous
(iii) closed
(iv) Differentiable

Any continuous function defined on acan be approximated uniformly by a
polynomial function.
e)
(i) $[a, \infty)$
(ii) (a, b)
(iii) $(-\infty, \infty)$
(iv) $[\mathrm{a}, \mathrm{b}]$

SECTION B - K3 (CO2)

Answer any THREE of the following
$(\mathbf{3} \times 10=30)$
Show that a mapping f of a metric space X into a metric space Y is continuous iff $f^{-1}(V)$ is open in X for every open set V in Y.
Let f be defined on $[a, b]$. If f has a local maximum at a point $x \in(a, b)$ and if $f^{\prime}(x)$ exists, then show that $f^{\prime}(x)=0$.
a) Show that the lower Riemann-Stieltjes integral cannot exceed the upper Riemann-Stieltjes integral.
b) Let $f(x)=x$ and $\alpha(x)=x^{2}$. Does $\int_{0}^{1} f d \alpha$ exists? If it exists, find its value.

6
Suppose $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ pointwise, $x \in E$ and $M_{n}=\sup _{x \in E}\left|f_{n}(x)-f(x)\right|$ then explain that $f_{n}(x) \rightarrow f_{n}$ uniformly iff $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.

7
Show that a sequence of continuous function defined on an interval $[\mathrm{a}, \mathrm{b}]$, if $f_{n} \rightarrow f$ uniformly on $[a, b]$, then f is continuous on $[a, b]$.

SECTION C - K4 (CO3)

Answer any TWO of the following

8 State and prove the generalized mean value theorem.
9 If $f_{1}, f_{2} \in \mathcal{R}(\alpha)$ on $[a, b]$. Determine that $\int_{a}^{b}\left(f_{1}+f_{2}\right) d \alpha=\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha$.
10 Criticize that there exists a real continuous function on the real line which is nowhere differentiable. Let $\left\{f_{n}\right\}$ be a uniformly convergent sequence with uniform limit f on $[a, b]$ and let f_{n} be integrable on $[a, b] \forall n \in N$. Then determine that f is itself integrable and $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$

SECTION D - K5 (CO4)

Answer any ONE of the following

($1 \times 15=15$)
Suppose f is continuous on $[a, b] . f^{\prime}(x)$ exists at some point $x \in[a, b], \mathrm{g}$ is defined on an interval I which contains the range of f and g is differentiable at $f(x)$. Determine that if
$h(t)=g(f(t)), a \leq t \leq b$ then h is differentiable at x and $h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$. Also Interpret the statement with $h(x)=\sin \frac{1}{x}$, for every $x \neq 0$ in R.
a) Defend that every k-cell is compact.

13
b) Let $f(x)= \begin{cases}x^{2}, & x \neq 1 \\ 0, & x=1\end{cases}$
$\lim _{x \rightarrow 1} x^{2}$ determine if limit exists.
SECTION E - K6 (CO5)

Answer any ONE of the following

$(1 \times 20=20)$
a) State and Demonstrate the necessary and sufficient condition for $f \in \mathcal{R}(\alpha)$.
b) Derive the necessary and sufficient condition for uniform convergence.

Discuss and justify whether a uniformly continuous polynomial P_{n} is real for a continuous complex function f in $[a, b]$.

