LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 M.Sc. DEGREE EXAMINATION – MATHEMATICS FIRST SEMESTER – NOVEMBER 2023

IKSI SEMESIEK - NOVEMBER 2020

PMT1MC02 – REAL ANALYSIS-I

Date: 03-11-2023 Dept. No. Time: 01:00 PM - 04:00 PM

SECTION A – K1 (CO1)		
	Answer ALL the questions(5 x 1 = 5)	
1	Answer the following.	
a)	What is a closure of a set? Give one example.	
b)	Verify whether the function $f(x) = x^2 + 1$ satisfies mean value theorem in the interval [1,4].	
c)	State the necessary and sufficient condition for $f \in \mathcal{R}(\alpha)$.	
d)	Define uniform convergence.	
e)	Why is the Weierstrass approximation theorem important?	
SECTION A – K2 (CO1)		
	Answer ALL the questions (5 x 1 = 5)	
2	Choose the correct answer.	
a)	Let X be the metric space which is both complete and totally bounded then is said to be (i) scalar (ii) compact (iii) complete (iv) discrete	
b)	If f has a derivative at c then it isat c. (i) Continuous (ii) Bounded (iii) closed (iv) Neither or nor continuous	
c)	If $f_1(x) \le f_2(x)$ on $[a, b]$ then (i) $\int_a^b f_2 d\alpha \le \int_a^b f_1 d\alpha$ (ii) $\int_a^b f_2 d\alpha = \int_a^b f_1 d\alpha$ (iii) $\int_a^b f_1 d\alpha \le \int_a^b f_2 d\alpha$ (iv) $\int_a^b f_2 d\alpha = -\int_a^b f_1 d\alpha$	
d)	If $\{f_n\}$ is a sequence of continuous function on E and if $f_n \to f$ uniformly then f is on E . (i) Continuous (ii) Discontinuous (iii) closed (iv) Differentiable	
e)	Any continuous function defined on acan be approximated uniformly by a polynomial function. (i) $[a, \infty)$ (ii) (a, b) (iii) $(-\infty, \infty)$ (iv) $[a,b]$	

Max. : 100 Marks

SECTION B – K3 (CO2)		
	Answer any THREE of the following(3 x 10 = 30)	
3	Show that a mapping f of a metric space X into a metric space Y is continuous iff $f^{-1}(V)$ is open in X for every open set V in Y.	
4	Let f be defined on [a, b]. If f has a local maximum at a point $x \in (a, b)$ and if $f'(x)$ exists, then show that $f'(x) = 0$.	
5	a) Show that the lower Riemann-Stieltjes integral cannot exceed the upper Riemann-Stieltjes integral. b) Let $f(x) = x$ and $\alpha(x) = x^2$. Does $\int_{-1}^{1} f d\alpha$ exists? If it exists, find its value. (5+5)	
6	Suppose $\lim_{n\to\infty} f_n(x) = f(x)$ pointwise, $x \in E$ and $M_n = \sup_{x \in E} f_n(x) - f(x) $ then explain that $f_n(x) \to f_n$ uniformly iff $M \to 0$ as $n \to \infty$	
7	Show that a sequence of continuous function defined on an interval [a, b], if $f_n \to f$ uniformly on [a, b], then f is continuous on [a, b].	
$\frac{[(u, v], (u, v)]}{\text{SECTION C} - \text{K4}(\text{CO3})}$		
	Answer any TWO of the following(2 x 12.5 = 25)	
8	State and prove the generalized mean value theorem.	
9	If $f_1, f_2 \in \mathcal{R}(\alpha)$ on $[a, b]$. Determine that $\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$.	
10	Criticize that there exists a real continuous function on the real line which is nowhere differentiable.	
11	Let $\{f_n\}$ be a uniformly convergent sequence with uniform limit f on $[a, b]$ and let f_n be integrable	
11	on $[a, b] \forall n \in N$. Then determine that f is itself integrable and $\int_a^b f(x) dx = \lim_{n \to \infty} \int_a^b f_n(x) dx$	
SECTION D – K5 (CO4)		
	Answer any ONE of the following(1 x 15 = 15)	
12	Suppose <i>f</i> is continuous on [<i>a</i> , <i>b</i>]. $f'(x)$ exists at some point $x \in [a, b]$, g is defined on an interval <i>I</i> which contains the range of <i>f</i> and <i>g</i> is differentiable at $f(x)$. Determine that if $h(t) = g(f(t)), a \le t \le b$ then <i>h</i> is differentiable at <i>x</i> and $h'(x) = g'(f(x))f'(x)$. Also Interpret	
	the statement with $h(x) = sin \frac{1}{x}$, for every $x \neq 0$ in <i>R</i> .	
13	a) Defend that every k-cell is compact. b) Let $f(x) = \begin{cases} x^2, & x \neq 1 \end{cases}$	
15	b) Let $f(x) = \{0, x = 1\}$	
	$\lim_{x \to 1} x^{-} \text{ determine if limit exists.}$ SECTION E – K6 (CO5)	
	Answer any ONE of the following $(1 \times 20 = 20)$	
14	a) State and Demonstrate the necessary and sufficient condition for $f \in \mathcal{R}(\alpha)$.	
14	b) Derive the necessary and sufficient condition for uniform convergence.	
15	Discuss and justify whether a uniformly continuous polynomial P_n is real for a continuous complex function f in $[a, b]$.	
	########	