LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2023

PMT3MC01 - TOPOLOGY

Date: 30-10-2023
Time: 01:00 PM - 04:00 PM

SECTION A - K1 (CO1)

Answer ALL the questions

1 Answer the following
a) Define a topological space with an example.
b) What do you mean by a subspace topology?
c) Explain briefly a closed subset in a topological space.
d) When can you say that a topological space is separated?
e) Define a compact space.

SECTION A - K2 (CO1)
Answer ALL the questions
2 Choose the correct answer
a) (i) $[1,2]$ is open in R
(ii) $[1,2$) is open in R
(iii) $(1,2]$ is open in R
(iv) $(1,2)$ is open in R
b) $Y=[-1,1]$, a subspace of R
(i) $A=\left\{x / \frac{1}{2}<|x|<1\right\}$ is open in $Y \& R$
(ii) $B=\left\{x / \frac{1}{2}<|x| \leq 1\right\}$ is not open in Y
(iii) $C=\left\{x / \frac{1}{2} \leq|x|<1\right\}$ is open in $Y \& R$
(iv) $D=\left\{x / \frac{1}{2} \leq|x| \leq 1\right\}$ is open in $Y \& R$
c) (i) \varnothing and X are open
(ii) \varnothing and X are closed
(iii) arbitrary intersections open sets in X are open in X
(iv) arbitrary unions of open sets in X are open in X
d) (i) (0,1]is compact
(ii) $(0,1]$ is not compact
(iii) $(0,1]$ is closed
(iv) $(0,1]$ is not bounded
e) (i)Any compact subset of a topological space is closed
(ii) Every closed subset of a compact space need not be compact
(iii) Every limit point compact space is compact space
(iv) Every limit point compact space is sequentially compact

SECTION B - K3 (CO2)

4 List the limit points of the following sets with explanation.
a) $A=(0,1]$
b) $B=\left\{\frac{1}{n}, n \in N\right\}$
c) $C=\{0\} \cup(1,2)$
d) $Q=$ the set of all rational numbers

5 If $f: X \rightarrow Y$ is a function where X is metrizable, prove that f is continuous if and only if for every convergent sequence $x_{n} \rightarrow x$ in X, the sequence $f\left(x_{n}\right) \rightarrow f(x)$.
6 Demonstrate intermediate value theorem.
7 Is every closed interval in R uncountable? Justify it.
SECTION C - K4 (CO3)

Answer any TWO of the following

($2 \times 12.5=25$)
8 How would you say that any interval or a ray in a linear continuum L in the order topology is connected?
9 Examine whether the following statement is true: "If $f: X \rightarrow Y$ is a bijective continuous function, X is compact and Y is Hausdorff, then f is a homeomorphism"
10 Is the product of finitely compact spaces compact? Justify it with a supportive proof
11 What are the separation axioms? Formulate them.
SECTION D - K5 (CO4)

Answer any ONE of the following

($1 \times 15=15$)
12 Does there exist a metric d^{\prime} that induces a topology on a metric space (X, d) such that every subset of X is bounded with respect to metric d^{\prime} ? Prove the supporting result
13 Examine whether the following statements are true?
(i) X is compact metrizable space implies X is limit point compact space.
(ii) X is sequentially compact metrizable space implies X is compact space

SECTION E - K6 (CO5)

Answer any ONE of the following
($1 \times 20=20$)
14
Defend the topologies induced by the euclidean metric and the square metric are the same as the product topology on R^{n}.
15 Demonstrate Urysohn lemma.

