LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

THIRD SEMESTER - NOVEMBER 2023

PMT3MC02 - NUMBER THEORY

Date: 01-11-2023
Time: 01:00 PM - 04:00 PM

Max. : 100 Marks

SECTION A - K1 (CO1)

Answer ALL the questions

1. Answer the following
a) Does the following statement:
b) Define reduced residue system.
c) State the reciprocity law for Jacobi symbol.
d) Let g be a primitive root $\bmod p$, where p is an odd prime. Then what are the quadratic residues and non-residues $\bmod p$?
e) Write any two applications for public key cryptography?

SECTION A - K2 (CO1)
Answer ALL the questions
2. Choose the correct answer

The greatest common divisor of 4598 and 3211 is
(i) 21
a) (ii) 19
(iii) 23
(iv) 17

Let k be the order of $a \bmod n$ then $a^{b} \equiv 1(\bmod n)$ if and only if
(i) k divides a
b) (ii) k divides b
(iii) k divides n
(iv) k divides 1

If P is an odd positive integer then $(2 \mid P)$ is
(i) $(-1)^{\frac{P-1}{2}}$
c) (ii) $(-1)^{\frac{P^{2}-1}{2}}$
(iii) $(-1)^{\frac{p^{2}-1}{8}}$
(iv) $(-1)^{\frac{P-1}{8}}$

If a is a primitive root of modulo m, then
(i) $\exp _{m}(a) \leq \varphi(m)$
d) (ii) $\exp _{m}(a)=\varphi(m)$
(iii) $\exp _{m}(a) \geq \varphi(m)$
(iv) $\exp _{m}(a)<\varphi(m)$

Suppose in the 26-letter alphabet, the transformation $f(P) \equiv P+3 \bmod 26$. The word "YES" is
e) encrypted as
(i) BHV

	(ii) ZKB (iii) FQO (iv) DEM
SECTION B - K3 (CO2)	
	Answer any THREE of the following $\quad(\mathbf{3 \times 1 0}=\mathbf{3 0})$
3.	State and prove Fundamental theorem of arithmetic.
4.	Solve $9 x \equiv 21(\bmod 30)$.
5.	Examine that the Diophantine equation $y^{2}=x^{3}+k$ has no solution if k has the form $k=(4 n-1)^{3}-4 m^{2}$, where m and n are integers such that no prime $p \equiv-1(\bmod 4)$ divides m.
6.	Given $m \geq 1,(a, m)=1$ and let $f=\exp _{m}(a)$. Then show that (i) $a^{k} \equiv a^{h}(\bmod m)$ if and only if $k \equiv h(\bmod m)$ (ii) $a^{k} \equiv 1(\bmod m)$ if and only if $k \equiv 0(\bmod m)$. I particular, $f \mid \varphi(m)$ (iii) The numbers $1, a, a^{2}, \ldots, a^{f-1}$ are incongruent modulo m.
7.	Working in the 26-letter alphabet, use the matrix $A=\left(\begin{array}{ll}2 & 3 \\ 7 & 8\end{array}\right)$, to encipher the message unit "NO" and decipher the ciphertext "FWMDIQ".
SECTION C - K4 (CO3)	
	Answer any TWO of the following \quad (2 x 12.5 = 25)
8.	State and prove Euler's summation formula.
9.	Assume $(a, m)=d$ and suppose that $d \mid p$. Then show that the linear congruence $a x \equiv b(\bmod m)$ has exactly d solutions modulo m. These are given by $t, t+\frac{m}{d}, \ldots, t+(d-1) \frac{m}{d}$, where t is the solution modulo $\frac{m}{d}$, of the linear congruence $\frac{a}{d} x \equiv \frac{b}{d}\left(\bmod \frac{m}{d}\right)$.
10.	Explain Legendre's symbol $(n \mid p)$ and show that it is completely multiplicative function of n.
11.	Examine that in every reduced residue system $\bmod p$ there are exactly $\varphi(d)$ numbers ' a ' such that $\exp _{p}(a)=d$ for an odd prime p and d, any positive divisor of $p-1$.
SECTION D - K5 (CO4)	
	Answer any ONE of the following (1 \quad (15=15)
12.	(a) Determine the exponent of (i) 3 modulo 7 and (ii) 2 modulo 11. (8 marks) (b) State and prove Euclid's theorem. (7 marks)
13.	Justify the Chinese remainder theorem with a suitable proof and hence evaluate $x \equiv 2(\bmod 3) ; x \equiv 3(\bmod 5)$ and $x \equiv 2(\bmod 7)$.
SECTION E - K6 (CO5)	
	Answer any ONE of the following $\quad(\mathbf{1 \times 2 0}=20)$
14.	(a) Explain Jacobi symbol and prove all its properties. (15 marks) (b) If the exponent of a and b modulo m are f and g respectively and $(f, g)=1$ then prove that the exponent of $a b$ modulo m is $f g$. (5 marks)
15.	Suppose that we know that our adversary is using a 2×2 enciphering matrix with a 29 -letter alphabet, where $A-Z$ have the numerical equivalents $0-25$, blank $=26, ?=27,!=28$. We receive the message "GFPYJP X?UYXSTLADPLW" and suppose that we know that the last five letters of plaintext are our adversary signature "KARLA". Decipher the above message.

