First Semester
General, Finance, Marketing, HRM, IB, RM, Tourism,
OSCM, IM, HM
RESEARCH METHODOLOGY
(2012-13 Batch Onwards)
Time : Three hours Maximum : 100 marks
PART A — (5 x 6 = 30 marks)
Answer any FIVE out of the following.
1. Define Research. Explain the process of Research.
2. Explain the techniques involved in defining a research problem.
3. Explain Research design. What are the concepts relating to Research design?
4. What are the merits and demerits of questionnaire?
5. What are the steps involved in the process of hypothesis?
6. How to calculate Dispersion?
7. Explain the importance of Non Parametric tests.

PART B — (5 × 10 = 50 marks)

Answer any FIVE out of the following.

9. Explain various types of Research.

10. What are the different types of Sampling?

11. What are the methods of collection of primary data?

12. A Sample survey indicates that out of 3232 births, 1705 were boys and the rest were girls. Do these figures confirm the hypothesis that the sex ratio is 50:50?

13. Explain the limitations of Case Study Method.

14. Briefly explain the different types of parametric tests of hypothesis.

15. Describe the steps for preparing a Research Report.

16. Find the Coefficient of Correlation between X and Y.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>31</td>
<td>28</td>
<td>34</td>
</tr>
</tbody>
</table>

17. Case Study (Compulsory):

Calculate the sum of squares of the derivations of various items in the sample from the mean value of the respective samples. The derivations would be taken from 4, 6, 14 and 8 for all the four samples respectively. These derivations would be squared and totaled. The grand total of the sum of the square derivations would be divided by the degree of freedom to get the values of variance within samples. There are four degree of freedom in each sample and hence the total number of degrees of freedom.

<table>
<thead>
<tr>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>56</td>
<td>80</td>
<td>32</td>
</tr>
</tbody>
</table>