LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK (LOCF) FOR POSTGRADUATE PROGRAMMES

(with effect from 2022-23)

M.Sc. Chemistry DEPARTMENT OF CHEMISTRY

LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600034

PREFACE

The outcome-based curriculum for post graduate courses in chemistry is focused on the advanced level of learning fields such as inorganic, physical, organic and analytical chemistry. The curriculum is designed to include scientific research methodology and project as components of research along with the necessary provision for employability and entrepreneurship. The periodical restructuring of the syllabi is carried out to fulfill the requirements of graduate attributes, qualification descriptors, program learning outcomes and course-level learning outcomes. The purpose of the outcome-based education is meant to provide an exposure to the fundamental and advanced concepts in different branches of chemistry and its applications keeping in mind the growing needs for higher education, employability, entrepreneurship and social responsibility.

The outcome-based education enriches the curriculum to achieve self-learning module, minor projects and industrial internship to enable students to get equipped for higher studies and employment.

The program also includes training to students for seminar presentation preparation of internship reports, hands-on training in lab courses, skills to handle instruments, synthesis and analysis of compounds, developing leadership qualities, organization and participation in the intercollegiate academic competitions. The papers studied under different categories such as subject elective, cross-disciplinary, value-added course, life skill training etc. provide additional strength to augment students' interest in related fields.

The outcome-based curriculum is intended to enrich the learning pedagogy to global standards. ICT enabled teaching learning methodology seminar invited lectures endowment lectures provide ample opportunities to students for interactions with industrialists, entrepreneurs, academics, researchers, alumni, etc. to update with recent trends in different fields of chemistry. The exposure to the academic/industrial internship and MOUs with industries can open an avenue for a start-up and its progress would be followed regularly. The OBE based evaluation methods will reflect the true cognitive levels of the students as the curriculum is designed with course outcomes and cognitive level correlations as per BLOOM's Taxonomy.

CONTENTS

S. No.	Content	Page
1	Vision and Mission of Loyola College	5
2	Vision and Mission of the Department	5
3	Programme Educational Objectives (PEOs)	6
4	Programme Outcomes (POs)	7
5	Programme Specific Outcomes (PSOs)	8
6	Correlation Rubrics	9
7	Mapping of PEOs with Vision and Mission	9
8	Mapping od POs and PEOs	9
9	Mapping od PSOs and PEOs	9
10	Mapping od PSOs and POs	9
11	PG Overall Course Structure	10
12	MSc Chemistry Restructured LOCF Curriculum	12
	Course Descriptors (Major Course)	
13	PCH1MC01 Organic Reaction Mechanism and Stereochemistry	14
14	PCH1MC02 Concepts in Inorganic Chemistry	20
15	PCH1MC03 Quantum Chemistry and Group Theory	25
16	PCH1MC04 Analytical Chemistry	30
17	PCH1MC05 Organic Laboratory Techniques-I	36
18	PCH1MC06 Inorganic Quantitative Analysis and Preparations	39
19	PCH2MC01 Organic Reaction Mechanism and Heterocyclic compounds	42
20	PCH2MC02 Coordination Chemistry	47
21	PCH2MC03 Scientific Research Methodology and Communications	52
22	PCH2MC04 Organic Laboratory Techniques-II	55
23	PCH2MC05 Inorganic Semi-micro Qualitative Analysis	58
24	PCH3MC01 Main Group Elements and Nuclear Chemistry	61
25	PCH3MC02 Thermodynamics & Chemical Kinetics	67
26	PCH3MC03 Molecular Spectroscopy	72
27	PCH3MC04 Physical Chemistry Practical-I	77
28	PCH4MC01 Organic Synthesis and Photochemistry	80
29	PCH4MC02 Electrochemistry	85
30	PCH4MC03 Physical Chemistry Practical-II	91
31	PCH4PJ01 Project	95
	Course Descriptors (Major Elective)	
32	PCH2ME01 Biomolecules and Natural Products	97
33	PCH2ME02 Surface Chemistry and Catalysis	102
34	PCH3ME01 Applied Organic Chemistry	107
35	PCH3ME02 Organometallic Chemistry	112
	Course Descriptors (Interdisciplinary)	
36	PCH3ID01 Material Science	117
	Course Descriptors (Cross-disciplinary)	

37	PCH2CD01 Chemistry of Consumer products	123
	Course Descriptors (Value-added course)	
38	PCH3VA01 Herbal Products Development and Formulation	128

VISION AND MISSION OF LOYOLA COLLEGE

VISION

Towards holistic formation of youth, grounded in excellence, through accompaniment to serve the humanity.

MISSION

- To provide inclusive education through an integral and holistic formative pedagogy.
- To promote skills that prepare them for the future.
- To kindle in young minds the spirit of social and environmental justice with a blend of academic excellence and empathy.
- To stimulate critical and conscientious scholarship leading to meaningful and innovative human capital.

CORE VALUES

- Cura Personalis
- Pursuit of Excellence
- Moral Rectitude
- Social Equity
- Fostering solidarity
- Global Vision
- Spiritual Quotient

VISION AND MISSION OF THE DEPARTMENT

VISION

To strive with excellence in teaching and research in Chemistry to empower students with values for the society.

MISSION

To render competent and empathetic educational service to meet global standards in academia/industry through commitment, dedication and continuous learning.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) (School of Physical Sciences)

PEO 1 PEO 2	 Professional Skill Development To provide professional training and skill development to students in physical sciences, related disciplines and nurture them to become responsible persons in the society. Core Competency Development
1202	To augment their core-competencies and knowledge levels in science, humanities and inter-disciplinary areas by imparting education of high standards and advanced technological tools with specialized research orientation.
PEO 3	Innovative Curriculum of Global Relevance To upgrade the curriculum periodically based on scientific advancements, innovations and societal relevance, so as to cater to the shifting global demands as cited by University Grants Commission, CSIR, etc.
PEO 4	Environmental Sensitivity and Sustainability To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to protect and safeguard the environment for a sustainable future by respecting ecological balance of the globe.
PEO 5	Ethical Principles and Holistic Development To promote ethical values and special focus on the holistic development of students to become proficient, skilled, competent and socially responsible people.
PEO 6	Accessibility and Academic Excellence To provide an accessible learning environment of excellence and equal opportunity to students, enabling them to develop their creativity, critical thinking, leadership, employability skills and making them competent for job market.

PROGRAMME OUTCOMES (POs) (School of Physical Sciences)

PO 1	Disciplinary and Inter-disciplinary Knowledge for Capacity Building
	Students will acquire required knowledge of the laws governing nature through
	classroom teaching and experimenting in the laboratories. They will develop a sense of
	interdisciplinary approach to identify and resolve issues through project, seminars, field
	work, internships and industrial visits related to their curriculum.
PO 2	Skills for Effective and Efficient Communication
	Students will be able to improve and enhance their communication skills such as
	reading, writing, listening and speaking. This will help them to express their ideas
	clearly and effectively and subsequently empower them to become agents of social
	change and hence pave the way for betterment of the society at large.
PO 3	Sense of Inquiry and Problem-solving Skills
	Students will demonstrate the core competencies of their discipline through analytical
	reasoning, problem solving and research related skills, cooperation, team work,
	scientific reasoning and thinking that would make them emerge as entrepreneurs or
	administrative personnel.
PO 4	Skills to Impact Society
	Students will develop leadership, team spirit and other psychomotor skills which will
	help them to identify, approach and analyze the existing societal problems with an eye
	to look beyond gender, age, caste, creed or nationality and work for the emancipation
	and empowerment of humanity.
PO 5	Energy, Ethics and Environment
	They will be able to involve themselves in framing policies of social relevance and
	develop scientific temper to harness energy and work on alternate resources
	scientifically.
PO 6	Self-directed and Lifelong Learning
	Through digital literacy, students will engage in self-paced and curious learning with
	necessary knowledge acquisition and hence develop motivation for a sustained lifelong
	learning capability. Students will accumulate knowledge by continuous activity centered
	learning and leverage the past knowledge to solve the problems in the future.
PO 7	National and International-priorities Preferences and Perspectives
	Students will be able to prioritize national and global issues with an aim to build a
	nation and an integrated world through contributions that imbibe the spirit of
	multicultural competency, creative thinking, critical analysis, political awareness and
	the much-needed awareness on international policies.
	·

PROGRAMME SPECIFIC OUTCOMES (PSOs) (Department of Chemistry)

DOO I	
PSO 1	Recall the various concepts of chemistry and apply them suitably to find solutions
	for the challenges in academics, industry, environment and society.
	for the chanonges in deddennes, medstry, environment and society.
PSO 2	Propose solutions through scientific research for issues in public health, safety
150 2	
	and hygiene.
PSO 3	Transform the acquired knowledge to become successful in competitive exams
	for higher studies/research/administration in private/public sectors.
	for mener studies/research/administration in private/public sectors.
PSO 4	Familiarize with the different branches of chemistry such as analytical, organic,
1504	
	inorganic, physical, food, medicinal, polymer, biochemistry, etc., and become
	suitable for a career in these fields.
PSO 5	Rationalize the societal importance of chemistry to develop leadership and
1000	
	entrepreneurship skills to create job opportunities nationally.
DCO (
PSO 6	Interpret and contribute significantly to update/modify/improve/simplify the
	course contents of undergraduate and post graduate levels globally.
PSO 7	Impart a broad foundation in chemistry and enable them to evaluate and analyze
1007	
	critically the scientific facts.

Correlation Rubrics

High	Moderate	Low	No Correlation		
3	2	1	0		

Mapping of PEOs with Vision and Mission

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
Vision	3	3	3	3	3	3
Mission	3	3	3	3	3	3

Mapping of POs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
PO1	3	3	3	3	3	3
PO2	3	3	3	2	3	3
PO3	3	3	3	3	3	3
PO4	3	3	3	3	3	3
PO5	3	3	3	3	2	3
PO6	3	2	3	3	3	3
PO7	3	3	3	3	3	2

Mapping of PSOs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
PSO1	3	3	3	3	3	3
PSO2	3	3	2	3	3	3
PSO3	3	3	3	2	3	3
PSO4	3	3	3	3	3	3
PSO5	3	3	3	3	3	3
PSO6	3	3	3	3	3	3
PSO7	3	3	3	3	3	3

Mapping of PSOs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
PSO1	3	3	3	3	3	3	3
PSO2	3	2	3	3	3	2	3
PSO3	3	3	3	3	3	3	3
PSO4	3	3	3	3	3	3	3
PSO5	3	3	3	3	3	3	3
PSO6	3	3	3	3	3	3	3
PSO7	3	3	3	3	3	3	3

DEPARTMENT OF CHEMISTRY PG RESTRUCTURING 2022-23 OVERALL COURSE STRUCTURE

Sem	Code	Subject Name	T/L/P	Cate	Hour	Credit
					S	S
	PCH1MC01	Organic Reaction Mechanism and	Т	MC	6	7
		Stereochemistry	1	WIC	0	/
	PCH1MC02	Concepts in Inorganic Chemistry	Т	MC	5	6
Ι	PCH1MC03	Quantum Chemistry and Group Theory	Т	MC	6	6
	PCH1MC04	Analytical Chemistry	Т	MC	5	5
	PCH1MC05	Organic Laboratory Techniques-I	L	MC	4	2
	PCH1MC06	Inorganic Quantitative Analysis and Preparations	L	MC	4	2
	PCH2MC01	Organic Reaction Mech. & Heterocyclic compounds	Т	MC	5	5
	PCH2MC02	Coordination Chemistry	Т	MC	6	6
	PCH2MC03	Scientific Research Methodology and Communications	Т	МС	4	3
	PCH2MC04	Organic Laboratory Techniques-II	L	MC	4	2
	PCH2MC05	Inorganic Semi-micro Qualitative Analysis	L	MC	4	2
II	PCH2ME01	Biomolecules and Natural Products	L	ME	4	2
	PCH2ME02	Surface Chemistry and Catalysis	Т	ME	4	2
		MOOC Courses	Т	MO	2##	2
		Life Skills		LS	2#	1
	PCH2CD01	Chemistry of Consumer products	T/L	CD	3	1
					3 to 4	
		Summer Internship		SI	Wee	1
					ks#	
	PCH3MC01	Main Group Elements and Nuclear Chemistry	Т	MC	5	5
	PCH3MC02	Thermodynamics & Chemical Kinetics	Т	MC	6	6
	PCH3MC03	Molecular Spectroscopy	Т	MC	5	5
	PCH3MC04	Physical Chemistry Practical-I	L	MC	4	2
III	PCH3ME01	Applied Organic Chemistry	Т	ME	4	2
111	PCH3ME02	Organometallic Chemistry	Т	ME	4	2
	PCH3ID01	Material Science (ID)	Т	ID	6	3
		Soft Skills		SK	2#	1
	PCH3VA01	Herbal products development and formulation		VA	2#	1
		Service Learning (LEAP)		SL	2#	1
IV	PCH4MC01	Organic Synthesis and Photochemistry	Т	MC	5	6

PCH4MC02	Electrochemistry	Т	MC	6	7
PCH4MC03	Physical Chemistry Practical-II	L	MC	4	2
PCH4MC04	Project	Р	MC	15	5

MC – Major Core; ME-Major Elective; ID-Inter-Disciplinary; MO-MOOC; LS-Life Skills; SK-Soft Skills;

CD-Cross Disciplinary; VA- Value Added; SI-Summer Internship; SL-Service Learning; PJ-

Project

Outside the Class Hours

Additional Credits

M.Sc. Chemistry - Restructured LOCF Curriculum (effective from June, 2022)

PART	SEMESTER I	SEMESTER II	SEMESTER III	SEMESTER IV
	Analytical Chemistry	Coordination Chemistry	Main Group Elements and	Electrochemistry (6h/7c)
	(5h/5c)	(6h/7c)	Nuclear Chemistry (5h/6c)	
	Concepts in Inorganic	Organic Reaction Mechanism	Molecular Spectroscopy (5h/6c)	Organic Synthesis and
	Chemistry (5h/6c)	and Heterocyclic Compounds		Photochemistry (5h/6c)
		(5h/6c)		
	Organic Reaction	Scientific Research	Thermodynamics and Chemical	Physical Chemistry
MAJOR CORE (MC)	Mechanism and	Methodology and	Kinetics (6h/7c)	Practical-II (4h/2c)
	Stereochemistry (6h/7c)	Communications (4h/4c)		
	Quantum Chemistry and	Inorganic Semi-micro	Physical Chemistry Practical-I	
	Group Theory (6h/6c)	Qualitative Analysis (4h/2c)	(4h/2c)	-
	Inorganic Quantitative	Organic Lab Techniques -II	-	
	Analysis and Preparations	(4h/2c)		-
	(4h/2c)			
	Organic Lab Techniques-I	-		
	(4h/2c)		-	-
		Biomolecules and Natural	Applied Organic Chemistry	
SUBJECT ELECTIVE	-	Products (4h/2c)	(4h/2c)	-
(SE)		Surface Chemistry and	Organometallic Chemistry (4h/2c)	
	-	Catalysis (4h/2c)		-
INTER-DISCIPLINARY	_	_	Material Science (6h/3c)	_
(ID)	-	_		

ADDITIONAL CREDIT		(2h#/2c##) (outside class		
(MOOCs) (MO)	-	hours)	-	-
LIFE SKILLS (LS)	-	(2h/1c) (outside class hours)	-	-
SOFT SKILLS (SK)	-	-	(2h/1c) (outside class hours)	-
CROSS-DISCIPLINARY	_	Chemistry of Consumer		_
(CD)	-	Products (3h/1c)	-	-
VALUE - ADDED			Herbal Products Development and	
	-	-	Formulation (2h/1c) (outside class	-
COURSES (VA)			hours)	
SUMMER INTERNSHIP		(3 to 4 Weeks/1c)	-	
(SI)	-			-
SERVICE LEARNING			(2h/1c) (outside class hours)	
(SL-LEAP)	-	-		-
PROJECT (PJ)	-	-	-	Project (15h/5c)
Total	30h/28c	32h/23c (2h#/2c##	36h/26c	30h/20c
10,01	J011/ 200	Additional)	501/200	J011/20C

Note: A Theory paper shall have 3 to 6 contact hours and a practical session shall have 2 to 4 contact hours

COURSE DESCRIPTORS

Course Code	PCH1MC01
Course Title	ORGANIC REACTION MECHANISM AND STEREOCHEMISTRY
Credits	7
Hours/Week	6
Category	Major Course (MC) - Theory
Semester	Ι
Regulation	2022

Course Overview

- 1. The aim of the course is to explain the concepts of advanced organic chemistry with mechanistic approach.
- 2. The course gives a detailed discussion about the methods of determining the reaction mechanism and stereochemistry.
- 3. The importance of this course is to explain the evidences in favour of the mechanism of organic reactions and rearrangements.
- 4. The stereochemical aspects of organic reaction mechanisms are discussed in detail.
- 5. The course describes the important aspects involved in the preparation of various functional organic compounds.

Course Objectives

- 1. To understand the path, feasibility and the mechanism of various organic reactions.
- 2. To comprehend the techniques in the determination of reaction mechanisms
- 3. To understand the concept of stereochemistry involved in organic compounds.
- 4. To correlate and appreciate the differences involved in the synthetic applications of oxidising and reducing agents.
- 5. To design feasible synthetic routes for the preparation of organic compounds.

Prerequisites	Basic knowledge of organic chemistry.
---------------	---------------------------------------

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	 Mechanisms and Methods 1.1 Thermodynamic and kinetic requirements of reactions: Hammond postulate, microscopic reversibility, potential energy diagrams, transition states and intermediates. 1.2 Methods of determining mechanism: Non-kinetic methods- product analysis, determination of intermediates-isolation, detection and trapping. Cross-over experiments, isotopic labelling, isotope effects and stereo chemical evidences. Kinetic methods - relation of rate and mechanism. 1.3 Effect of structure on reactivity: Hammett and Taft equations. Linear free energy relationship, partial rate factor, substituent and reaction constants. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
Π	 Rearrangements 2.1 Rearrangements to electron deficient carbon: Pinacol-pinacolone and semi-pinacolone rearrangements - applications and stereochemistry, Wagner-Meerwein, Demjanov, Dienone-phenol, Baker-Venkataraman, Benzilic acid and Wolff rearrangements. Rearrangements to electron deficient nitrogen: Hofmann, Curtius, Schmidt, Lossen, Beckmann and abnormal Beckmann rearrangements. Rearrangements to electron deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements. Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens, [1,2]-Wittig and [2,3]- Wittig rearrangements. 2.2 Rearrangement from heteroatom to carbon - The Orton, Hofmann Martius and Fischer-Hepp rearrangement. 2.3 Intramolecular rearrangements – Claisen, abnormal Claisen, aza Claisen, Claisen-Ireland, Cope, oxy-Cope and anionic oxy-Cope, 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	Benzidine rearrangements.			
III	Oxidation and Reduction Reactions	18	CO 1	K1, K2, K3, K4,
	3.1 Mechanisms: Direct electron transfer, hydride		CO 2	K5, K6
	transfer, hydrogen transfer, displacement,		CO 3	
	addition-elimination, oxidative and reductive		CO 4	
	coupling reactions.		CO 5	
	3.2 Mechanism of oxidation reactions:			
	Dehydrogenation by quinones, selenium dioxides,			
	ferricyanide, mercuric acetate lead tetraacetate,			
	permanganate, manganese dioxide, osmium			
	tetroxide, oxidation of saturated hydrocarbons,			
	alkyl groups, alcohols, halides and amines.			
	Reactions involving cleavage of C-C bonds -			
	cleavage of double bonds, oxidative			
	decarboxylation, allylic oxidation, oxidation by			
	chromium trioxide-pyridine, DMSO-Oxalyl			
	chloride (Swern oxidation) and Corey-Kim			
	oxidation,dimethyl sulphoxide - dicyclohexyl			
	carbodiimide (DMSO-DCCD).			
	3.3 Mechanism of reduction reactions: Wolff-Kishner,			
	Clemmenson, Rosenmund, reduction with Trialkyl			
	and triphenyltin hydrides, McFadyen-Steven's			
	reduction, Homogeneous hydrogenation,			
	Hydroboration with cyclic systems, MPV and			
	Bouveault-Blanc reduction.			
IV	Stereochemistry-I	18	CO 1	K1, K2, K3, K4,
	4.1 Introduction to molecular symmetry and chirality		CO 2	K5, K6
	– axis, plane, center, alternating axis of		CO 3	
	symmetry. Optical isomerism due to		CO 4	
	asymmetric and dissymmetric molecules with		CO 5	
	C, N, S based chiral centers. Optical purity,			
	prochirality, enantiotopic and diastereotopic			
	atoms, groups, faces, axial and planar chirality,			
	chirality due to helical shape, methods of			
	determining the configuration. Racemic			
	modifications: Racemization by thermal, anion,			
	cation, reversible formation, epimerization,			

	mutarotation			
	 mutarotation. 4.2 D, L system, Cram's and Prelog's rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and prostereo isomerism, chiral shift reagents and chiral solvating reagents. Geometrical isomerism: E, Z notations, geometrical isomerism in C=C, cyclic systems and oximes. 4.3 Criteria for optical purity: Resolution of racemic modifications, asymmetric transformations, asymmetric synthesis, destruction. Stereoselective and stereospecific synthesis: Enantioselective reduction of alkenes and ketones, reduction of ketones, epoxidation of allyl alcohols, dihydroxylation of alkenes, absolute chiral synthesis, optical purity calculations. 			
V	 Stereochemistry-II 5.1 Conformation and reactivity of acyclic systems, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium - Curtin-Hammett principle. 5.2 Stability of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and Brett's rule. 5.3 Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation, Cotton effect, axial haloketone rule and determination of configuration. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

Text Books

- 1. J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001.
- 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.
- 3. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedition, New Age International Publishers, 2015.
- 4. P. Y. Bruice, Organic Chemistry, 7thedn, Prentice Hall, 2013.
- R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee, Organic Chemistry, 7thedition, Pearson Education, 2010.
- 6. D. Nasipuri, Stereochemistry of Organic Compounds, 2ndedition, New Age Publishers, 2005.
- 7. S. M. Mukherji and S. P. Singh, Reaction Mechanism in Organic Chemistry, 3rd edition, Macmillan India Ltd., 1984.
- 8. J. Clayden, N. Greeves, S. Warren, Organic Compounds, 2ndedition, Oxford University Press, 2014.

Suggested Readings

- 1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A and B, 5th edition, Kluwer Academic / Plenum Publishers, 2007.
- 2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
- 3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
- 4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill, 2000.
- 5. I. L. Finar, Organic chemistry, Vol-1, 6th edition, Pearson Education Asia, 2004.
- 6. I. L. Finar, Organic Chemistry. Vol-2, 5th edition, Pearson Education Asia, 1975.
- 7. T. H. Lowry K. S. Richardson, Harper and Row, Mechanism and theory in organic chemistry, 2nd edition, New York, 1981.
- 8. S. H. Pine, Organic Chemistry, 5th edition, McGraw Hill International Edition, 1987.
- 9. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing House, Bombay, 2000.
- 10. G. C. Barret, Elucidation of Organic structures by Physical and Chemical Methods Part I (Eds) K.W. Bentley and G.W. Rirty John Wiley, 1972, Chapter VIII.

Web Resources

- 1. https://bit.ly/3zT4PUq
- 2. https://www.organic-chemistry.org/
- 3. https://www.studyorgo.com/summary.php
- 4. <u>https://www.clutchprep.com/organic-chemistry</u>

COs	CO Description	Cognitive Level
CO 1	To recall the basic principles of organic chemistry.	K1, K2
CO 2	To understand the formation and detection of reaction intermediates of organic reactions.	К3
CO 3	To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.	K4
CO 4	To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.	К5
CO 5	To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.	K6

COURSE DESCRIPTOR

Course Code	PCH1MC02		
Course Title	CONCEPTS IN INORGANIC CHEMISTRY		
Credits	6		
Hours/Week	5		
Category	Major Course (MC) - Theory		
Semester	Ι		
Regulation	2022		
Course Overvie	W		
1. This course de	emonstrates the fundamental concepts of types of compounds based on bonding.		
2. This course makes the students conversant with the electrochemical nature and reactivi			
metals and non-metals.			
3. This course explains the basic theories to predict the structure of any covalent compounds.			
4. This course demonstrates how the properties of the compounds are correlated to the bonding.			

5. This course trains the students to recognize the nuts and bolts of stereochemistry of chiral complexes and synthesis of coordination compounds.

Course Objectives

1. To understand and explain the concepts of bonding interactions and molecular topologies.

- 2. To predict the lattice energy and structure of various minerals.
- 3. To discuss the stability of compounds and its determinations.
- 4. To draw the structure of various molecules based on the bonding theories.
- 5. To explain the importance of weak bonding forces on the properties of compounds.

Prerequisites	Basic knowledge in chemistry.
---------------	-------------------------------

UNIT	CONTENT	HOURS	COs	COGNITIVE
		10	00.1	LEVEL
Ι	Atoms, Term symbols and Electrode potential	18	CO 1	K1, K2, K3,
	1.1 Modern views of atomic structure, radial and		CO 2	K4, K5, K6
	angular wave functions. Poly electronic atom:		CO 3	
	Born-Oppenheimer approximations. Quantum		CO 4	
	numbers. Computation of effective nuclear charge-		CO 5	
	applications of Slater's rule, electronic			
	configurations. Periodicity.			
	1.2 Atomic and Molecular term symbols: methods of			
	determining ground state term. Pigeon hole			
	diagram, ground and higher states and Russel-			
	Saunders microstate method for p^2 and d^2			
	configurations-term symbol for non-equivalent			
	electrons. Molecular term symbols: di- and poly			
	atomic molecules - H ₂ O and NH ₃ . Walsh diagram			
	of AH ₂ molecules.			
	1.3 Electrode potential: concept of oxidation and			
	reduction potentials. Periodic trends. Application			
	of electrode potentials- interpretation of chemical			
	behaviour. Electrode potential diagrams and uses:			
	Latimer and Frost.			
	1.4 Reactivity of metals and non-metals-spontaneity of			
	redox reactions. Masking and demasking agents.			
	Oxidising and reducing properties of substances in			
	aqueous solution in non-standard conditions.			
II	Ionic compounds	15	CO 1	K1, K2, K3,
	2.1 Packing of ions in crystals: ccp, hcp, bcc and fcc.		CO 2	K4, K5, K6
	Tetrahedral and octahedral voids/interstitial sites -		CO 3	
	edge length, radius, size of interstitial site and		CO 4	
	radius ratio rule. Stoichiometry and crystal		CO 5	
	structures - AB, AB_2 and ABX_3 - Perovskite,			
	spinel and inverse spinel.			
	2.2 Lattice energy: Derivation of Born-Lande			
	equation, Born-Haber cycle-thermochemical			
	calculations, factors affecting hydration, lattice			
	energy and solvation energy. Fajan's rule and			
	applications.			

	 2.3 Defects in solids: Point defects, metal deficiency, F-center. Defects and conduction. Reactions in solid state-diffusion, diffusion coefficient, diffusion mechanism, vacancy and interstitial diffusion. 	14	60.1	K1 K2 K3
	 Covalent Compounds 3.1 Molecular topologies-Lewis, Sidgwick-Powell, VB, VSEPR - Postulates, applications and drawbacks. Bent's rule and energetics of hybridisation: BF₃, CH₄, PCl₃F₂, PF₅, SF₆, IF₇, SnCl₂, NH₃, H₂O, SF₄, ClF₃, XeF₂, XeF₄, IF₅, CO₃²⁻, NO₃⁻, SO₄²⁻, ClO₄-, ClO₃⁻ ions, I₃⁻ and BF₄⁻. 3.2 Molecular orbital theory-LCAO-MO model, TASO, LUMO-HOMO concepts in bonding-homo diatomic molecules. 3.3 MO theory for hetero poly atomic molecules (CO, NO, HCl, CO₃²⁻,NO₃²⁻, SO₃, O₃, NO₂, CO₂, N₃⁻). Comparison between VBT and MOT. 	14	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
IV	 Metallic, Weak Chemical Forces and Acid-Base systems 4.1 Bonding in metals: packing of atoms, band theory of metals and metallic properties, insulators, and semiconductors. 4.2 Hydrogen bonding: unique properties, structure of DNA, and molecular self-assembly. Supramolecular architectures. van der Waals forces. Weak forces of interactions- dipoledipole, induced dipole. Inclusion compounds, clathrates- gas hydrates. 4.3 Acid-base definitions: Bronsted-Lowry, Lux-Flood, Lewis, Usanovich, steric effects on the strength of acids and bases. 4.4 Non-aqueous solvents: classification, typical reactions and applications of H₂SO₄, CH₃COOH, BrF₃ and molten salts. 	14	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

V	Coordination Compounds	14	CO 1	K1, K2, K3,		
	5.1 Terminologies, nomenclature, types of ligands, -		CO 2	K4, K5, K6		
	chelate, steric and macrocyclic effects. Werner's		CO 3			
	theory, isomerism. EAN rule. Thermodynamic		CO 4			
	Stability - determination of stability constants		CO 5			
	from thermodynamic data. Irving-William					
	series.					
	5.2 Nomenclature of chiral complexes, study of					
	absolute configurations of chiral complexes-					
	ORD and CD. Stability of complexes: HSAB					
	principle.					
	5.3 Synthesis of metal complexes-direct, by ligand					
	substitution, Schiff-base condensation, ligand					
	substitution and template methods.					
Textboo	ks					
1. K.F.	Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saund	lers company	: Philade	lphia, 1977.		
2. Puri,	Sharma and Kalia, Principles of Inorganic Chemistry, 33	3rd edition, V	Vishal pul	olishing company,		
2019						
3. J.E.	Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemist	try; 4th ed.; I	Harper and	d Row: NewYork,		
1983						
4. B.E.	Douglas, D. H. McDaniel and J. J. Alexander, Concepts	and Models	of Inorgar	nic Chemistry; 3rd		
ed.; J	ohn Wiley & Sons, 1994.					
5. Satya	Prakash, G. D. Tuli, S.K. Basu and K.D. Madan, Adv	anced Inorg	anic Cher	mistry, S.Chand&		
Com	pany Ltd, New Delhi, 2010.					
6. F. A.	Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann	, Advanced I	Inorganic	Chemistry; 6th		
ed.; V	Viley Interscience: New York, 1988.					
Suggest	ed Readings					
1. T. M	oeller, Inorganic Chemistry, A Modern Introduction; Joh	n Wiley: Ne	w York, 1	982.		
2. D. F	S. Shriver, P. W. Atkins and C.H. Langford; Inorganic	Chemistry;	3rd ed.; (Oxford University		
Press	: London, 2001.					
3. G. H	3. G. H. Stout and L. H. Jenson, X-Ray Structure Determination; 2nd ed.; John Wiley & Sons: New					
York	York, 1989.					
4. Solid	4. Solid-state Chemistry and its application, D.K. Chakrabarty, New Age International Private					
Publi	cations, 2010.					
Web Re	sources					
1. <u>https:</u>	//nptel.ac.in/					
2. <u>https://ocw.mit.edu/courses/chemistry/</u>						
3. <u>https:</u>	3. <u>https://swayam.gov.in</u>					

Course Outcomes	(COs) and Cognitiv	ve Level Mapping
-----------------	--------------------	------------------

COs	CO Description	Cognitive Level
CO 1	To understand fundamental concepts of various bonding and reactions in inorganic compounds.	K1, K2
CO 2	To illustrate the chemical reactions using ionic, covalent, coordination, and weak bonding forces.	К3
CO 3	To analyse Slater's rule, lattice energy, molecular topologies, stability constants, and intermolecular forces.	K4
CO 4	To determine the defects in solid, term symbols, van der Waals forces, synthesis of metal complexes.	K5
CO 5	To construct various redox and half reactions, MO diagrams of molecules and to synthesise the compounds.	K6

COURSE DESCRIPTOR

Course Code	PCH1MC03
Course Title	QUANTUM CHEMISTRY AND GROUP THEORY
Credits	6
Hours/Week	6
Category	Major Course (MC) – Theory
Semester	Ι
Regulation	2022
 It deals with modes of modes The description multi-electron This course a properties su Semi-empiric delocalization 	emistry deals with the study of wave functions through mathematical aspects. It the quantum mechanical models to explore the energetics involved in the basic option and its applications to interpret spectroscopic properties of molecules. It is applications of radial and angular functions for hydrogen atom and on system is dealt with quantum mechanically. It is a exploring the symmetry aspects of molecules to understand the ach as polarity, optical activity and mutual exclusion principle. It is used for conjugated systems for the calculation of on/resonance energy and group theoretical approach is employed in predicting in and vibrational modes.
 concepts and mechanics. 2. To learn the and harmonia 3. To apply the 4. To make stu- its point group 5. To interpret 	and essentially the characteristics of wave functions in terms of mathematical d the need for quantum mechanics to account for the failures of classical importance of quantum mechanical models such as particle in a box, rigid rotor c oscillator e concept of quantum mechanics to hydrogen and poly electronic systems. Idents to become aware of the importance of symmetry in molecules to predict up and classify the symmetry operations. t the application of quantum mechanical methods for chemical bonding and to ibrational modes, hybridization scheme and selection rules using the concepts of
Prerequisites	Basic knowledge of chemistry and mathematics.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	 Fundamentals of Quantum Mechanics 1.1 Coordinate systems, functions - real, complex, odd, even, normalized, orthogonal, orthonormal and eigen functions. Operators: linear, angular, differential, Hermitian and Hamiltonian. quantum mechanical treatment of angular momentum, significance of angular momenta and commutators: [x, px], [x,px²], [Lx,Ly] and [Lx2, Lx]. 1.2 Introduction to quantum mechanics: Failure of classical mechanics: black body radiation, photo electric effect, hydrogen spectrum and Compton effect. 1.3 Need and postulates of quantum mechanics. Schrodinger wave equation – Time independent and time dependent. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
II	 Quantum mechanical models 2.1 Particle in a box (1D, 2D and 3D), degeneracy, application to linear conjugated molecular systems, free particle, ring systems, Bohr's correspondence principle. Quantum mechanical tunneling – probability of tunneling and tunneling coefficient, inversion of ammonia, electron and proton transfer reactions. 2.2 Harmonic Oscillator - wave equation and solution, anharmonicity, force constant and its significance. 2.3 Rigid Rotor - wave equation and solution, calculation of rotational constants and bond length of diatomic molecules. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5,K6
III	 Applications to hydrogen and poly electron atoms 3.1 Hydrogen atom and hydrogen like ions: Hamiltonian - wave equation and solution, radial and angular functions, representation of radial distribution functions. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5,K6

	3.2	Approximation methods - variation method: trial wave functions, variation integral and application to particle in a 1D box. Perturbation method: first order and application. Qualitative features of approximation methods. Hartree-Fock self-consistent field method, foundation of density functional theory: Hohenberg - Kohn theorem and Kohn - Sham equation. Helium atom - electron spin, Pauli's exclusion principle and Slater determinant.			
IV	Gro	up theory	18	CO 1	K1, K2, K3,
	4.1	Group, subgroup, symmetry elements,		CO 2	K4, K5, K6
		operations, classification - axial and non-axial.		CO 3	
		Dihedral point groups: C_{nv} , C_{nh} , D_n , D_{nh} , D_{nd} ,		CO 4	
	1.0	T_d and O_h . Symmetry and polarity.		CO 5	
	4.2	Matrix representations and classes of symmetry			
		operations, reducible, irreducible and direct product representations.			
	4.3	The Great orthogonality theorem:			
		general relationship of irreducible			
		representations, reduction formula, construction			
		of character table for C_{2v} , C_{2h} , C_{3v} and D_{2h} point			
		groups.			
V	Che	mical applications of quantum chemistry and	18	CO 1	K1, K2, K3,
	grou	ip theory		CO 2	K4,K5,K6
	5.1	Hydrogen molecule: Molecular orbital theory		CO 3	
		and Heitler-London (VB) treatment. Energy		CO 4	
		level diagram. Hydrogen molecular ion: Use of		CO 5	
		linear variation function and LCAO methods.			
		Calculation of overlap, resonance and coulomb			
	5.2	integrals, bonding energy, probability density. Electronic structure of conjugated systems:			
	5.2	Huckel method applied to ethylene, allyl			
		systems, butadiene, cyclopropenyl,			
		cyclobutadiene and benzene.			
	5.3	Applications of group theory to molecular			
		vibrations, electronic spectra of formaldehyde			
		and ethylene, chemical bonding.Symmetry based			

	selection rules.					
Te	xt Books	-				
1.	R.K. Prasad, Quantum Chemistry, New Age International	Publishers, N	ew Delhi,	2010, 4 th revised		
	edition.					
2.	D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd	$1, 2013, 2^{nd} ed$	ition.			
3.	A. Vincent, Molecular Symmetry and Group Theory. A	0	l Introduc	ction to Chemical		
	Applications, John and Willy & Sons Ltd., 2013, 2 nd Edition					
4.	T. Engel & Philip Reid, Quantum Chemistry and Speci	troscopy, Pear	rson, Nev	v Delhi, 2018, 4 th		
	edition.					
5.	Chang, Raymond. Physical Chemistry for the Biosciences.	Sansalito, CA	Universi	ty Science, 2005.		
6.	F. A. Cotton, Chemical Applications of Group Theory, John	Wiley & Son	is, 2003, 2	2 nd edition.		
7.	K. V. Raman, Group Theory and its Applications to Ch	<i>emistry</i> , Tata	McGraw	-Hill, New Delhi,		
	1990.					
8.	G. K. Vemulapalli, Physical Chemistry, Prentice Hall of Inc.	lia Pvt. Ltd. 2	001.			
Su	ggested Readings:					
1.	N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4					
2.	D.A. McQuarrie and J. D. Simon, <i>Physical Chemistry</i> , A Mo	olecular Appr	<i>oach</i> , Viv	a Books Pvt. Ltd,		
	New Delhi, 2012.					
3.	R. P. Rastogi & V. K. Srivastava, An Introduction to Qu	antum Mech	anics of (Chemical Systems,		
	Oxford & IBH Publishing Co., New Delhi, 1999.					
4. 5	R.L. Flurry. Jr, Symmetry Group Theory and Chemical apple			Inc, 1980		
5.	J. M. Hollas, <i>Symmetry in Molecules</i> , Chapman and Hall, Lo		-			
6.	H. Eyring, J. Walter & E. Kimball, <i>Quantum Chemistry</i> ,	Wiley Interna	itional edi	ition, John Wiley,		
7	London, 2011.					
7.	W. J. Moore, <i>Physical Chemistry</i> , Longman, London, 1972, 5 th edition.					
8.	8. G. W. Castellan, <i>Physical Chemistry</i> , Addison-Wesley, London, 1983, 3 rd edition.					
117	eb Resources					
	https://nptel.ac.in/courses/104101124					
1. 2.						
2. 3.	<u>https://ipc.iisc.ac.in/~kls/teaching.html</u> https://www.digimat.in/nptel/courses/video/104106083/L01.html					
3. 4.	https://www.digimat.in/nptel/courses/video/111106113/L01.html					
- . 5.						
5.						

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive
		Level
CO 1	To define and outline the characteristics of wave functions, the need for quantum	K1, K2
	mechanics and symmetry concepts.	
CO 2	To apply the concept of quantum mechanics and group theory to predict the	K3
	electronic structure and spectral properties.	
CO 3	To classify the symmetry operation and wave function for correlating the bonding	K4
	and properties governed by polarity.	
CO 4	To improve the accuracy of trial wave functions using approximation methods and	K5
	specify the appropriate irreducible representations for group theoretical	
	applications.	
CO 5	To develop the analytical skills in evaluating the energies for electronic	K6
	transitions, IR/Raman activities and molecular structure.	

COURSE DESCRIPTOR

Course Code	PCH1MC04
Course Title	ANALYTICAL CHEMISTRY
Credits	5
Hours/Week	5
Category	Major Course (MC) – Theory
Semester	Ι
Regulation	2022

Course Overview

1. Analytical chemistry comprises of theoretical knowledge on various methods of titration, separation, thermal, electro and spectral techniques.

2. The aim of the course is to explain the principle of qualitative, quantitative and data analysis.

3. Instrumentation and applications of various analytical methods will be discussed in detail.

4. This course also covers the principle, instrumentation and applications of thermal and electro gravimetric analysis.

5. In this course, the different sampling methods and their statistical data are also examined.

Course Objectives

1. To understand the various types of separation and purification techniques.

2. To acquire the knowledge about different analytical methods and its applications.

3. To gain knowledge about the different thermal and electro analytical techniques.

4. To understand the principle and applications of atomic absorption and Emission spectroscopy.

5. To analyse the data of various samples in different sampling methods

Prerequisites Basic undergraduate level knowledge in analytical chemistry.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Data analysis	13	CO 1	K1, K2, K3, K4,
	1.1 Statistical considerations: population and		CO 2	K5, K6
	samples, sampling distributions, interference		CO 3	
	about the population mean, sampling problems.		CO 4	
	1.2 Measures of variability (dispersion): the total		CO 5	
	range, the interquartile range, the average			
	deviation, the variance-analysis of variance and			
	covariance; the standard deviation; normal			
	distributions: the normal distribution and the			
	normal probability curve.			
	1.3 Statistical analysis of data: Confidence interval,			
	Test of hypothesis -Student t-test, chi-square test,			
	F-test. Criteria for rejection of data- Q test.			
	Correlation and Regression – Least Square			
	method, correlation coefficient.			
		15	CO 1	
II	Separation Techniques	15	CO 1 CO 2	K1, K2, K3, K4,
	2.1 Chromatography - classification, concept of plate and rate theories, efficiency, resolution,		CO 2 CO 3	K5, K6
			CO 3 CO 4	
	selectivity and separation capability. Van Deemter equation and broadening of		CO 4	
	chromatographic peaks. Optimization of		005	
	chromatographic conditions.			
	2.2 Gas chromatography: Instrumentation- sample			
	injection systems - split/splitless, column types,			
	solid/ liquid stationary phases, temperature			
	programming, detectors - hot-wire, flame			
	ionization, photo ionizationand ECD. GC-MS -			
	determination of C, H, N and S.			
	2.3 High-Performance Liquid Chromatography:			
	Instrumentation-pumping system, sample			
	injection, column, detectors and advantages.			
	Principles of preparative and analytical HPLC.			
	-			
	2.4 Electrophoresis and capillary electrophoresis -			
	2.4 Electrophoresis and capillary electrophoresis - principle, instrumentation and applications.			

III	Thermoanalytical and Electroanalytical Methods	17	CO 1	K1, K2, K3, K4,
	3.1 Thermogravimetry: Principle - TGA and DTA		CO 2	K5, K6
	curves of MgC ₂ O ₄ .H ₂ O and Ca(OOCCH ₃) ₂ .H ₂ O.		CO 3	
	Simultaneous DTA and TGA curves - SrCO ₃ in		CO 4	
	air. DSC- Principle, Instrumentation and		CO 5	
	application. Comparison of DTA and DSC.			
	Evolved gas analysis: TG-MS and TG-FTIR.			
	Thermometric titrimetry – theory,			
	instrumentation and applications.			
	3.2 Electrogravimetry: Principle,Instrumentation,			
	electrogravimetric determination with constant			
	applied voltage and at constant current.			
	Applications -estimation of copper.			
	3.3 Coulometry: principles, types of coulometers,			
	constant current coulometric analysis,			
	coulometric titrations – principle, applications,			
	advantages and errors. Controlled potential			
	coulometry – Technique and applications of			
	inorganic and organic compounds.			
	3.4 Entropymetry for understanding the state of			
	health of the battery.			
IV	Titrimetric analysis	15	CO 1	K1, K2, K3, K4,
	4.1 Stoichiometry and expressions of concentrations.		CO 2	K5, K6
	Principle, titration curves of a weak dibasic acid		CO 3	
	versus strong base. Redox titrations: formal and		CO 4	
	standard potentials in various media,		CO 5	
	standardization, oxidizing systems: Mn(VII),			
	Ce(IV), Cr(VI) and V(V). Reducing systems:			
	V(II), Ti(III), Sn(II), Fe(II) in H ₃ PO ₄ .			
	4.2 Acid-base titrations in non-aqueous solvents:			
	classification, principle, auto-protolysis constant,			
	dielectric constant and its effect. Detection of			
	equivalence point – titrations in ethylene diamine,			
	glacial acetic acid, methanol and ethanol.			
	4.3 Complexometric Titrations: Stability of			
	complexes - stepwise formation constants,			
	titration curves, feasibility of complexation			
	titration.			
	4.4 Hydrolysis of salts – strong base vs weak acid,			

	weak base vs strong acid and weak acid vs weak			
	base.			
V	Encotromotory	15	CO 1	K1, K2, K3, K4,
v	Spectrometry	15		
	5.1 Spectrophotometry - principle, types, applications-		CO 2	K5, K6
	determination of the pH value of an indicator,		CO 3	
	identification of complex, determination of		CO 4	
	Fe(III) by EDTA. Spectrophotometric titrations.		CO 5	
	5.2 Atomic Absorption Spectroscopy: Principle,			
	instrumentation. Spectral and chemical			
	interferences, applications in qualitative and			
	quantitative analysis, determination of metals in			
	blood serum, lead in petrol, Mg in hard water.			
	Principle of inductively coupled plasma (ICP)			
	spectrometry.			
	5.3. Flame emission spectrometry: Principle,			
	instrumentation and interferences, determination			
	of alkali metals, and iron in non-ferrous alloys.			
	5.4 Turbidimetry and nephlometry: Principle,			
	instrumentation - determination of sulphate and			
	phosphate. Fluorimetry - Principle, excitation			
	and fluorescence spectra, factors affecting			
	fluorescence emission, determination of quinine			
	in tonic water, codeine and morphine.			
Text Bo	oks			l
	las A. Skoog, Donald M. West and F. James Holler, Fund	damentals of	analytica	1
-	nistry, 9th Ed., Harcourt Asia Pvt. Ltd., 2013.		unurytica	L
	Day, Jr. and A.L. Underwood, Analytical Chemistry, Pea	aroon 6th Ed	ition 201	5
		,		υ.
	aur, Instrumental methods of chemical analysis, Pragati Path. Jeffery, J. Bassett, J. Mendham and R. C. Denney			

- 4. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, Longman Scientific and Technical, 1989.
- 5. S.M. Khopkar, Basic concepts of analytical Chemistry,,3rd Edn, New age International Ltd, 2011.

Suggested Readings

- 1. D. A. Skoog, D. M. West and F. J. Holler, Analytical Chemistry an Introduction, Saunders College Publishers, 2000.
- 2. D.A. Skoog, E.J. Holler, Stanley. J. Croch, Principles of Instrumental Analysis, Cengage Learning, 6th edition, 2019.
- 3. J. Mendham, R. C. Denney, J. D. Barnes and M. Thomas, Vogel's Text book of Quantitative Chemical Analysis, Pearson Education Pvt. Ltd., 2004.
- 4. J. G. Dick, Analytical Chemistry, Sir George Williams University, McGraw-Hill Book Company, New York, 1973.
- 5. H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Seattle, Instrumental methods of analysis, 5th Ed., Harcourt Asia Pvt. Ltd., India, 2001.
- 6. E. Heftmann, Chromatography: Fundamentals and applications of chromatography and related differential migration methods Part A: Fundamentals and techniques, Elsevier, 2004.
- 7. M. G. Gore, Spectrophotometry and Spectrofluorimetry: A Practical Approach, Oxford University Press, 2000.
- Galen Ewing, Instrumental Methods & Chemical Analysis –5th ed., McGraw-Hill Publishing Company Ltd., 1985.
- 9. Gary D. Christian, Analytical Chemistry -, 6th ed. John Wiley and sons. Inc, New York, 1994.

Web Resources

- 1 <u>https://open.umn.edu/opentextbooks/textbooks/486</u>
- 2. https://www.ychem4u.com/2021/01/08/analytical-chemistry-
- 3. https://nptel.ac.in/courses/103/106/103106120/

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	
		Level
CO 1	To understand the principle of statistical analysis and instrumentation of various	K1, K2
	analytical methods	
CO 2	To apply chromatographic techniques in identifying the components, and infer the	К3
	principle of coulometry, spectrophotometry, thermal methods and to compute	
	statistical parameters to arrive at meaningful conclusions.	
CO 3	To analyse the data by statistical method and examine the significance of various	
	analytical technique	
CO 4	To assess the importance of data analysis and choice of analytical techniques to	K5
	study the chemical characteristics and	
CO 5	To develop analytical skills in thermal, electro analytical chromatographic	K6
	techniques for its applications in industries and research	

Course Code	PCH1MC05
Course Title	ORGANIC LABORATORY TECHNIQUES-I
Credits	2
Hours/Week	4
Category	Major Course (MC) - Lab
Semester	Ι
Regulation	2022

Course Overview

1. The practical course deals with the separation and analysis of two and three component mixtures and two stage preparations of organic compounds.

2. The course discusses on the systematic separation of two and three component mixtures along with systematic analysis for their functional groups.

3. The course also describes the separation methodology involving ether or aqueous solvents.

- 4. The preparation of organic compounds involves two stages of suitable combination of synthetic methodologies.
- 5. In overall, the practical paper highlights the systematic separation of mixtures, qualitative analysis, derivatization of functional groups and, finally, multi-stage preparation of organic compounds.

Course Objectives

- 1. To understand the concept of separation, qualitative analysis and preparation of organic compounds.
- 2. To develop analytical skill in the handling of chemical reagents for separation of binary and ternary organic mixtures.
- 3. To analyze the separated organic components systematically and derivatize them suitably.
- 4. To construct suitable experimental setup for the organic preparations involving two stages.
- 5. To experiment different purification and drying techniques for the compound processing.

Prerequisites Basic knowledge of chemistry.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL		
Ι	1. Separation and analysis:	30	CO 1	K1, K2, K3, K4,		
	A. Two component mixtures.		CO 2	K5, K6		
	B. Three component mixtures		CO 3			
			CO 4			
			CO 5			
II	2. Preparations: Two stage processes involving	30	CO 1	K1, K2, K3, K4,		
	nitration, halogenation, diazotization, deamination,		CO 2	K5, K6		
	rearrangements, hydrolysis, reduction, alkylation,		CO 3			
	hydroxylation, formylation, cyclisation and		CO 4			
	oxidation.		CO 5			
	Two stage preparations:					
	a) <i>p</i> -Bromoacetanilide from aniline					
	b) <i>p</i> -Nitroaniline from acetanilide					
	c) 1,3,5-Tribromobenzene from aniline					
	d) Acetyl salicyclic acid from methyl salicylate					
	e) Benzilic acid from benzoin					
	f) <i>m</i> -Nitroaniline from nitrobenzene					
	g) <i>m</i> -Nitrobenzoic acid from methyl benzoate					
Text boo	oks					
	S. Gnanapragasam and G. Ramamurthy, Organic Chemist	ry – Lab Ma	nual,			
	S. Viswanathan Co. Pvt. Ltd, 2009.					
2. J. N						
Suggested Readings						
1. Vogel's Text book of Practical Organic Chemistry, 5 th Ed, ELBS/Longman, England, 2003.						
Web Resources						

1. https://bit.ly/3tMt2YQ

COs	CO Description	Cognitive
		Level
CO 1	To recall the basic principles of organic separation, qualitative analysis and	K1, K2
	preparation.	
CO 2	To explain the method of separation and analysis of separated organic mixtures	К3

	and convert them as derivatives by suitable preparation method.	
CO 3	To determine the characteristics of separation of organic compounds by various chemical reactions.	K4
CO 4	To develop strategies to separate, analyze and prepare organic compounds.	K5
CO 5	To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.	K6

Co	urse Code	PCH1MC06				
Course Title		INORGANIC QUANTITATIVE ANALYSIS				
Credits		2				
Ho	urs/Week	4				
Cat	tegory	Major Course (MC) – Lab				
Ser	nester	Ι				
Reg	gulation	2022				
Co	urse Overvie	W				
 Course Overview This course impart the skill of the students in the quantitative estimation of ions by visual colorimetric and to prepare standard solutions by serial dilution method. Illustration of the role of masking and demasking agents in the quantitative analysis would be thoroughly utilized in complexometric methods. Students would be taught to identify the methodology of estimation of a metal ion in presence of another metal ion. Students to understand the techniques and mechanism of determination of the presence of dissolved metal salts in water. 		and to prepare standard solutions by serial dilution method. of the role of masking and demasking agents in the quantitative analysis would by utilized in complexometric methods. uld be taught to identify the methodology of estimation of a metal ion in another metal ion. understand the techniques and mechanism of determination of the presence of etal salts in water.				
Co	urse Objectiv	/es				
 To understand and enhance the visual observation as an analytical tool for the quantitative estimation of ions. To recall the principle and theory in preparing standard solutions. To train the students for improving their skill in estimating the amount of ion accurately present in the solution 						
4. 5.	5. To determine the amount of ions present in a binary mixture accurately.					
Pre	requisites	Basic knowledge in Chemistry				

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Colorimetry (visual)	12	CO 1	K1, K2, K3,
			CO 2	K4, K5, K6
	1. Estimation of iron.		CO 3	
	2. Estimation of nickel.		CO 4	
	3. Estimation of lead		CO 5	
	4. Estimation of ammonium ion			
	5. Estimation of copper			
II	Complexometric Titration	12	CO 1	K1, K2, K3,
	1. Estimation of zinc, nickel, magnesium, and calcium.		CO 2	K4, K5, K6
	 2. Estimation of mixture of metal ions-pH control, 		CO 3	
	masking and demasking agents.		CO 4	
	3. Determination of calcium and lead in a mixture (pH		CO 5	
	control).			
	4. Determination of manganese in the presence of iron.			
	5. Determination of nickel in the presence of iron.			
III	Quantitative (Two component) Analysis:	30	CO 3	K3, K4, K5,K6
	Gravimetry and Titrimetry	00	CO 4	110, 11, 110,110
	Separation and estimation of mixtures by volumetric		CO 5	
	(v) and gravimetric (G) methods. Some recommended		000	
	mixtures are			
	1. Estimation of Copper(v) and Nickel(G)			
	 2. Estimation of Copper (v) and Calcium(G) 			
	3. Estimation of Fe(III)(G) and Nickel (G)			
	 4. Estimation of Barium (G) and Calcium(v) 			
	 5. Estimation of Copper (v) and Zinc(G) 			
	6. Estimation of Calcium(v) and Copper (G)			
IV	Cerimetric Titrations	6	CO 1	K1, K2, K3,
_ ,	1. Estimation of iron	~	CO 2	K4, K5, K6
			CO 3	,,
			CO 4	
			CO 5	

Text Books

- 1. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, *Vogel's Textbook of Quantitative Chemical Analysis*; 6th ed., ELBS, 1989.
- 2. J. D. Woollins, Inorganic Experiments; VCH: Weinheim, 1995.

Suggested Readings

- 1. G. Pass, and H. Sutcliffe, *Practical Inorganic Chemistry*; Chapman Hall, 1965.
- 2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge University Press, 1954.

Web resources

1. https://bit.ly/3Ncpy8C

COs	CO Description	Cognitive Level
CO 1	To recall the principle and theory in preparing standard solutions.	K1, K2
CO 2	To illustrate the role of EDTA in complexometric titrations in the quantitative estimation of Ca, Mg and Zn.	К3
CO 3	To analyze the amount of ions by selecting suitable method.	K4
CO 4	To determine the amount of ions present in a binary mixture accurately.	K5
CO 5	To construct methods and mechanism for the analysis of water for Industrial application	K6

Course Code	PCH2MC01
Course Title	ORGANIC REACTION MECHANISM AND HETEROCYCLIC COMPOUNDS
Credits	5
Hours/Week	5
Category	Major Course (MC) - Theory
Semester	П
Regulation	2022

Course Overview

1. The aim of the course is to explain the mechanism of various types of organic reactions and heterocyclic compounds.

2. The course gives a detailed discussion on the orientation and reactivity with evidences for reaction mechanism.

3. The importance of this course is to explain the reactivity of aliphatic and aromatic substrates in different reaction conditions.

4. The advanced synthetic methods and name reactions for synthetically important heterocyclic compounds are discussed.

5. The course includes the preparation of various functional organic compounds, five and six membered heterocyclic compounds containing two and more hetero atoms.

- 1. To understand the concept of aromaticity in benzenoid, non-benzenoid and heterocyclic compounds.
- 2. To understand the mechanism involved in various types of organic reactions with evidences.
- 3. To understand the applications of synthetically important reagents.
- 4. To correlate the reactivity between aliphatic and aromatic compounds.
- 5. To design synthetic routes for organic and heterocyclic compounds.

Prerequisites	Basic knowledge of organic chemistry.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Aromatic and Aliphatic Electrophilic Substitution	18	CO 1	K1, K2, K3, K4,
	1.1 Aromaticity: Aromaticity in benzenoid, non-		CO 2	K5, K6
	benzenoid, heterocyclic compounds and annulenes.		CO 3	
	Alternant and non-alternant hydrocarbons,		CO 4	
	Huckel's rule, energy level of π -molecular orbitals,		CO 5	
	homo- aromaticity, PMO approach. NMR as a tool			
	for aromaticity.			
	1.2 Aromatic electrophilic substitution: Orientation and			
	reactivity of phenol, nitrobenzene and halobenzene.			
	Multisubstitution reactions: Reactions involving			
	nitrogen electrophiles - nitration, nitrosation and			
	diazonium coupling. Sulphur electrophiles -			
	sulphonation. Halogen electrophiles - chlorination			
	and bromination. Carbon electrophiles - Friedel- Crafts alkylation, acylation and limitations.			
	1.3 Aliphatic electrophilic substitution mechanisms:			
	SE2, SE1 and SEi. Substitution by double bond			
	shifts, addition-elimination and cyclic mechanism.			
	Hydrogen as electrophile: Hydrogen exchange -			
	hydro dehydrogenation. Halogen electrophiles -			
	halogenation of aldehydes, ketones and carboxylic			
	acids. Nitrogen electrophiles- aliphatic diazonium			
	coupling, direct formation of diazo compounds,			
	direct amination, insertion by nitrenes. Sulphur			
	electrophiles - sulphonation, sulphenylation.			
	Carbon electrophiles: alkylation, acylation, alkoxy			
	carbonyl alkylation, Stork-enamine reaction and			
	insertion by carbene.			
			~ -	
II	Aromatic and Aliphatic Nucleophilic Substitution	15	CO 1	K1, K2, K3, K4,
	2.1 Aromatic nucleophilic substitution: Mechanisms -		CO 2	K5, K6
	S_NAr , S_N1 and benzyne mechanisms. Reactivity,		CO 3	
	effect of structure, leaving group and attacking		CO 4 CO 5	
	nucleophile. 2.2 Reactions: Oxygen and Sulphur nucleophiles,		05	
	Bucherer and Rosenmund, von Richter,			
	Sommelet- Hauser and Smiles rearrangements.			
	S_N1 , ion pair, S_N2 mechanisms and evidences.			
	Sign, ion pan, Sig2 meenaments and evidences.			

III	 2.3 S_N1, S_N2, S_Ni, and S_E1 mechanisms, neighbouring group participation - non classical carbocations. Reactivity: Effect of substrate, attacking nucleophile, leaving group and the medium – Swain - Scott, Grunwald - Weinstein relationship and ambident nucleophiles, Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon. Elimination and Free Radical Reactions 3.1 Mechanisms: E2, E1, E1cB and syn eliminations. Orientation of the double bond: Hoffmann and Saytzeff rules and applications. Reactivity: Effect of substrate, attacking bases, leaving group and medium. Mechanisms and orientation in pyrolytic eliminations. Stereochemistry - acyclic and cyclic systems. 3.2 Long lived and short-lived radicals - Production of radicals - thermal and photochemical reactions, methods of detection, stability, characteristics. Reactions - polymerization, addition, halogenations, aromatic substitutions and 	15	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
IV	 rearrangements. Reactivity: aliphatic, aromatic substrates, attacking radicals, effect of solvent. Addition to Carbon Multiple Bonds 4.1 Mechanisms: Addition to carbon-carbon multiple bonds, addition reactions - electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms. Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and nitrogen. Addition to carbon-hetero atom multiple bonds - Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, Wittig and Prins reactions. 4.2 Stereochemical aspects of addition reactions. Addition to carbon-hetero atom multiple bonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. 	15	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	4.3 Mechanism of condensation reactions involving				
	enolates – Stobbe reactions. Hydrolysis of esters				
	and amides, ammonolysis of esters.				
V	Heterocyclic Compounds	12	CO 1	K1, K2, K3, K4,	
	5.1 Nomenclature, aromaticity, basicity, reactivity and		CO 2	K5, K6	
	stability. Five and six membered heterocyclic		CO 3		
	compounds with two heteroatoms - 1,2 and 1,3-		CO 4		
	Azoles: Pyrazole, isothiazole, isoxazole,		CO 5		
	imidazole, thiazole and oxazole.				
	5.2 Diazines -pyridazine, pyrimidine, pyrazine, uracil,				
	thymine and cytosine - synthesis and reactions.				
	5.3 Heterocyclic compounds with more than two				
	heteroatoms – 1,2,3-triazole, 1,2,4-triazole,				
	tetrazole and pentazole – synthesis and reactions.				
Text Bo	l poks				
	arch and M. Smith, Advanced Organic Chemistry, 5 th edit	ion Iohn-Wi	lev and S	ons 2001	
	6. Gould, Mechanism and Structure in Organic Chemistry				
1959	_	ry, 11010, 1011	churt une	, viniston me.,	
		n New Age	Internatio	nal Publishers	
2015	3. P. S. Kalsi, Stereochemistry of carbon compounds, 8 th edition, New Age International Publishers, 2015				
	Bruice, Organic Chemistry, 7 th edition, Prentice Hall, 201	13			
	. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic Cher		tion Pear	rson Education	
2010		inistry, 7 cu	tion, i ca	son Education,	
	asipuri, Stereochemistry of Organic Compounds, 2 nd editio	on New Age	Publisher	~ 2005	
	. Mukherji and S. P. Singh, Reaction Mechanism in Orga	e e			
	Ltd.1984.	ine chemisu	y, 5 cuit		
	ayden, N. Greeves, S. Warren, Organic Chemistry, Oxford	1 University	Dross 2nd	adition 2016	
	red Readings		11055, 2	eaition, 2010.	
00	Pine, Organic Chemistry, 5 th edn, McGraw Hill Internatio	nal Edition	1097		
	•			0	
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing House, Bombay, 2000.				
3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc.,					
	1959. 4. T. J. Cilebrigt Hetero quelle Chemistre, Lengman Press, 1080.				
	 T. L. Gilchrist, Heterocyclic Chemistry, Longman Press, 1989. I. A. Joula and K. Mills, Heterocyclic Chemistry, 4thadition, John Wiley, 2010. 				
	5. J. A. Joule and K. Mills, Heterocyclic Chemistry, 4 th edition, John-Wiley, 2010.				
6. K. S. Richardson and T. H. Lowry, Mechanisms and Theory in Organic Chemistry by 3 rd edition,					
	Joanna Cotler Books, 1981. 7 T. H. Lewmy K. S. Dishardson, Haman and Davy Mashaniam and theory in anomia shemistry. 2 nd				
	7. T. H. Lowry K. S. Richardson, Harper and Row, Mechanism and theory in organic chemistry, 2 nd				
editio	edition, New York, 1981.				

- 8. S. H. Pine, Organic Chemistry, 5thedition, McGraw Hill International Edition, 1987.
- 9. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing House, Bombay, 2000.

Web Resources

- 1. https://bit.ly/3HMlFWX
- 2. https://www.organic-chemistry.org/
- 3. <u>https://www.studyorgo.com/summary.php</u>
- 4. https://www.clutchprep.com/organic-chemistry

COs	CO Description	Cognitive Level
CO 1	To recall the basic principles of aromaticity of benzenoid, non-benzenoid and heterocyclic compounds.	K1, K2
CO 2	To understand the mechanism of various types of organic reactions and heterocyclic compounds.	К3
CO 3	To predict the suitable reagents for the conversion of selective organic and heterocyclic compounds.	K4
CO 4	To correlate the principles of substitution, elimination addition reactions and heterocyclic compounds.	K5
CO 5	To design new routes to synthesis organic and heterocyclic compounds.	K6

UNIT	CONTENT	HOUR	COs	COGNITIVE
I	 Bonding in Coordination Compounds 1.1 Theories: Valence bond theory (VB) – drawbacks Crystal Field Theory: Crystal field splitting in T_d, O_h, square planar, square pyramid, cubic and trigonal bipyramid fields. Computation of CFSE in tetrahedral, LS and HS octahedral geometries. Crystal field stabilization parameters. Spectrochemical series. 1.2 Evidences of crystal field splitting: variation of ionic size, lattice energy, hydration energy, Octahedral site stabilization energy, prediction of spinel and inverse spinel, Jahn-Teller effect- static and dynamic- distortions in d¹⁻¹⁰low and high spin octahedral and tetrahedral complexes-consequences. 1.3 Molecular Orbital Theory: Evidences of metalligand covalency, TASO-MO concepts and diagram of complexes, Oh complexes with σ- and π-bonding T_d and square planar complexes. Kinetics of coordination compounds 2.1 Reactions-Inert or labile complexes: classification - Aquation: acid and base hydrolysis—D, A, and S_N1CB mechanism. Substitution reactions in 	носк <u>S</u> 19 19	CO 1 CO 2 CO 3 CO 4 CO 5 CO 1 CO 2 CO 3 CO 4	LEVEL K1, K2, K3, K4, K5, K6 K1, K2, K3, K4, K5, K6
	 square planar and octahedral complexes- Trans effect- trans effect series, theories-polarization, pi bonding, sigma bonding and Cardwell's electronegativity theory and applications. 2.2 Electron transfer reactions: mechanisms of innerand outer-sphere. Complementary and noncomplementary reactions. Marcus-Husch theory. Sequence of reactions in the catalytic activity of Ziegler-Natta catalyst-Wilkinson catalyst. 2.3 Photochemistry: Photophysical processes-Florescence and phosphorescence-Charge transfer Photosubstitution: Adamson's rules–examples. Photochemistry of [Ru(bpy)₃]²⁺ 		CO 5	

K3, K6
K3,
K6

	quadrupole splitting- Application to iron complexes-Fe(CO) ₅ , Fe ₂ (CO) ₉ , Fe ₃ (CO) ₁₂ , K ₄ [Fe(CN) ₆], K ₃ [Fe(CN) ₆ , FeCl ₃ , FeSO ₄ .7H ₂ O,			
	Fe[Fe(CN) ₆], [Fe(NO) $(H_2O)_5$] ²⁺ and tin complexes - R ₂ SnX ₂ and <i>cis</i> -R ₃ SnX and <i>trans</i> -			
	R_2SnX4 compounds.			
V Bio	inorganic Chemistry	16	CO 1	K1, K2, K3,
5.1	Metalloproteins - Metal storage, proteins and bio-		CO 2	K4, K5, K6
	mineralisation - Ferritin, trans ferritin,		CO 3	
	siderophores, sodium potassium balance,		CO 4	
	Transport proteins: oxygen carriers – haemoglobin		CO 5	
	- structure, oxygenation and stereochemistry -			
	Bohr effect. Biological redox system:			
	Cytochromes - classification of cytochrome a, b			
	and c, cytochrome- P450. Iron -sulphur proteins -			
	Rubredoxins and ferredoxins, Chlorophylls and			
	photosynthesis.			
5.2	Active site and functions of metallo enzymes: zinc enzymes - carboxy peptidase, peroxidase,			
	superperoxide dismutase and copper proteins -			
	haemocyanin, plastocyanin, stellacyanin, azurin.			
5.3	Nitrogen fixation via nitride formation, reduction of dinitrogen to ammonia. Chelate therapy- anticancer activity, mechanism of anitcancer			
	activity of cis platinum and related metal complexes, DDP. Radioisotopes - diagnosis as			
	radiopharmaceuticals.			
ext Books				

- 1993.
- F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1999.
- 3. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1980.
- 4. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.
- 5. K. K. Rohatgi Mukherjee, Fundamentals of photochemistry (Revised edition), Wiley Eastern Ltd., 1996.

- 1. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas, John Wiley, 2002, 3rd edn.
- 2. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
- 3. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman and Co, London, 2010.
- 4. Inorganic Chemistry: A Modern Introduction, T. Moeller, Wiley, New York, 1990.

Web Resources

- 1. <u>https://nptel.ac.in/</u>
- 2. <u>https://ocw.mit.edu/courses/chemistry/</u>
- 3. https://swayam.gov.in

COs	CO Description	Cognitive Level
CO 1	To understand the concepts of theories and characterisation of coordination compounds.	K1, K2
CO 2	To illustrate the distortion in the crystal field and mechanisms of electron transfer reactions.	К3
CO 3	To analyse the compounds using spectral characterisation techniques.	K4
CO 4	To determine the energy levels of molecular orbital and quantification of metal- ligand interactions.	К5
CO 5	To elucidate the structure of a molecule using spectral characterisation techniques and to synthesise the coordination compounds.	K6

Course Code	PCH2MC03
Course Title	SCIENTIFIC RESEARCH METHODOLOGY AND COMMUNICATIONS
Credits	3
Hours/Week	4
Category	Major Course (MC) - Theory
Semester	ΙΙ
Regulation	2022

Course Overview

- 1. The course focuses on learning the research and its methodology.
- 2. The methodology gives an insight on systematic training in research work with all ethical issues being taken care of.
- 3. The course deals with scientific writing and gives training to write thesis, project proposals, scientific reports and research articles.
- 4. The course also trains a student for seminar presentations.
- 5. In overall, the course discusses on learning research, practicing ethical values in research, collating the results, preparing a thesis and finally trains to present it or defend the work.

Course Objectives

- 1. To introduce the purpose and importance of research for future development.
- 2. To know the various indexes and abstracts in science and technology.
- 3. To learn literature search for current awareness and for retrospective survey.
- 4. To know the methodology of writing thesis and journal articles.

5. To develop communication skills of students for seminar and paper presentations.

Prerequisites	Basic knowledge of Chemistry.
---------------	-------------------------------

				COGNITI
UNI	CONTENT	HOURS	COs	VE
Т				LEVEL
Ι	Research, Literature search and Ethics	8	CO 1 CO 2	K1, K2,
	1.1 Research: Introduction, types, objectives, scope,		CO 3	K3, K4,
	and research problem: identification, selection,		CO 4	K5, K6
	formulation of research objectives, research design:		CO 5	
	components, types and importance.			
	1.2 Literature Search: Review of literature, journals,			
	books, periodicals, patents and abstracts. Chemical			
	abstracts: CASSI, indexes, retrospective search.			
	1.3 Research ethics, Institutional ethics, Plagiarism,			
	Copy right, intellectual property rights, royalty.			
II	Technical Writing	13	CO 1 CO 2	K1, K2,
	2.1 Technical communications: Technical and non-		CO 3	K3, K4,
	technical, outlines; documents: Full length research		CO 4	K5, K6
	paper, Short/Brief communications, Letters to		CO 5	
	editor, Book chapter, Review, Conference report,			
	Project proposal Components of research paper:			
	Title/Topic statement, Abstract/ keywords,			
	2.2 Components of thesis: aim and objectives,			
	hypothesis building, rationale of the paper, work			
	plan, materials and methodology, results and			
	discussion, key issues and arguments,			
	acknowledgement, conflict of interest statement,			
	bibliography, technical resumes and cover letters			
	2.3 Components of a research proposal: project			
	summary, key words, origin of the proposal, major			
	objectives, methodology, overview of status of			
	research and development in the subject,			
	importance of the proposed project in the context			
	of current status, bibliography / references.			
III	Scientific Publications	5	CO 1 CO 2	K1, K2,
	3.1 Literature search tools - SCOPUS, Google Scholar,		CO 3	K3, K4,
	PUBMED, Web of Science, Indian Citation Index.		CO 4	K5, K6
	Citation and referencing.		CO 5	
	3.2 Styles of referencing - APA, MLA, Oxford,			
	Harvard, Chicago Annotated bibliography. Tools			
	for citing and referencing - grammarly, Mendeelev,			

	endnote.				
IV	Presentation and Communication skills	4	CO 1 CO 2	K1, K2,	
	4.1 Tables, figures, graphs and diagrams – ChemDraw,		CO 3	K3, K4,	
	MS-Excel and PowerPoint slides. Poster		CO 4	K5, K6	
	preparation.		CO 5		
	4.2 Electronic submission of manuscripts, communication skills, oral and poster presentations.				
V	Seminar Presentation	30	CO 1	K1, K2,	
	Current topics in chemistry and in applied areas.		CO 2 CO 3	K3, K4,	
			CO 4	K5, K6	
			CO 5		
Text books					
1. Kothari, C. Research Methodology Methods & Techniques – New Age international Publishers,					
Reprint 2008.					
2. Anderson, J. Thesis and Assignment Writing, Wiley Eastern Ltd., 1997.					

- 3. Mukul Gupta, Deepa Gupta, Research Methodology PHI Learning Private Ltd., New Delhi, 2011.
- 4. Rajammal, P. Devadoss and K. Kulandaivel, A Hand Book of Methodology of Research, RMM Vidyalaya press, 1976.

- 1. John Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (Hardcover), 2008
- 2. John W. Creswell, Qualitative Research & Evaluation Methods, 2008.

Web Resources

- 1. https://bit.ly/3tLCETu
- 2. https://bit.ly/2Jc1qm5
- 3. <u>https://bit.ly/3OLOvJx</u>

COs	CO Description	Cognitive Level
CO 1	To recall the basic requirements to start research.	K1, K2
CO 2	To identify suitable research areas and perform a successful research work.	K3
CO 3	To collect the data, collate them suitably and come out with a successful thesis.	K4
CO 4	To appraise suitably and defend the work by delivering a seminar.	K5
CO 5	To publish the work in the form of research publications and proposal for the society.	K6

Course Code	PCH2MC04			
Course Title	ORGANIC LABORATORY TECHNIQUES-II			
Credits	2			
Hours/Week	4			
Category	Major Course (MC) - Lab			
Semester	II			
Regulation	2022			
 compounds. The estimatic compounds. This course et The course et The course chromatograp Overall, this p 	xplains the functional group estimation and extraction methodologies of organic tion technique provides the quantitative skill of analysis of various organic xplores the extraction of active natural products from food materials. also demonstrates the separation of organic mixtures by a suitable whic technique. practical course gives a complete training of estimation of organic compounds, natural products and explores the chromatographic separation of organic			
 Course Objectives To develop the analytical skills in organic quantitative analysis. To explore the techniques involved in estimation of organic compounds. To identify suitable method for the extraction of active components from the natural products. To demonstrate the different chromatographic techniques to separate various organic mixtures. To understand the different separation methods and estimation procedures of organic compounds. 				
Prerequisites	Basic knowledge of organic chemistry.			

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL	
Ι	1. Estimations	25	CO 1	K1, K2, K3, K4,	
	a) Estimation of Phenol (bromination)		CO 2	K5, K6	
	b) Estimation of Aniline (bromination)		CO 3		
	c) Estimation of Ethyl methyl ketone		CO 4		
	(iodimetry)		CO 5		
	d) Estimation of Glucose (redox)				
	e) Estimation of Ascorbic acid (iodimetry)				
	f) Estimation of Aromatic nitro groups (reduction)				
	g) Estimation of Glycine (acidimetry)				
	h) Estimation of Formalin (iodimetry)				
	i) Estimation of Acetyl group in ester				
	(alkalimetry)				
	j) Estimation of Hydroxyl group (acetylation)				
	k) Estimation of Amino group (acetylation)				
II	2. Extraction	25	CO 1	K1, K2, K3, K4,	
	a) Caffeine from tealeaves		CO 2	K5, K6	
	b) Nicotine from tobacco leaves		CO 3		
	c) Citric acid from citrus fruits		CO 4		
	d) Lycopene from tomatoes		CO 5		
	e) Lactose from milk				
	f) Piperine from black pepper				
III	3. Separation of components of a mixture	10	CO 1	K1, K2, K3, K4,	
	(Demonstration)		CO 2	K5, K6	
	a) Thin layer chromatography		CO 3		
	b) Column chromatography		CO 4		
	c) Paper chromatography.		CO 5		
	d) Ion-exchange chromatography				
	Text books				
 N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry – Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009. L. N. Curtu and B. Kanagar. A dwanged Europrimental Chemistry. S. Chend and Co. 2011. 					
2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 2011.					

1. Vogel's Text book of Practical Organic Chemistry, 5th Ed, ELBS/Longman, England, 2003.

Web Resources

1. https://bit.ly/3tMt2YQ

	Course Outcomes (COs) and Cognitive Level Mapping	
COs	CO Description	Cognitive
		Level
CO 1	To recall the basic principles of estimation and extraction of organic compounds.	K1, K2
CO 2	To develop the skills of quantitative analysis and the extraction of natural products.	К3
CO 3	To illustrate the reactivity of various functional groups for estimations and to apply a suitable technique for the separation of organic compounds from a mixture.	K4
CO 4	To formulate a suitable estimation method for a functional organic compound and a possible extraction procedure for natural products.	К5
CO 5	To design a suitable estimation method for any functional organic compound and a suitable extraction and separation procedure for any organic mixture.	K6

Course Code	PCH2MC05
Course Title	INORGANIC QUALITATIVE ANALYSIS AND PREPARATIONS
Credits	2
Hours/Week	4
Category	Major Course (MC) – Lab
Semester	Π
Regulation	2022
Course Overview	
1. This course is	with two modules of qualitative analysis as well as preparation of complexes
with purity che	ecking that involves quantitative estimation.
2. The students an	re taught with the technique and elementary idea of detection of cations as
common and r	are cations in a mixture.
3. The students an	re able to qualitatively identify several cations based on the knowledge of
solubility prod	uct, ionic product and precipitating agents.
4. Identification of	of metals using spot reagents is of analytical importance to the students for
applying these	techniques in analytical labs of food processing and dairy products.
5. The various tec	chniques learnt in quantitative analysis can be applied to determine the purity
of any synthes	ized compound.
Course Objectives	5
1. To understand	the characteristic reactions of individual cations as well as in the mixture that
enhances the inf	luence of one cation on another cations.
2. To adhere the cl	assification of cations based on solubility.
3. To train the s	students for improving their skill in maintaining suitable pH to get the
characteristic pr	ecipitate based on solubilty product.
4. To estimate the	amount of ion accurately present in the complex to prove the purity.
5. To enhance the	skill of doing yield percentage calculations.
Prerequisites	Basic knowledge in Chemistry

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
1	Principles of Analysis of mixture of cations	4	CO 1	K1, K2, K3,
	Classification of cations into groups and preparation		CO 2	K4, K5, K6
	of salt solution and reagents, Inter group and		CO 3	
	intragroup separations and confirmatory test for		CO 4	
	cations.		CO 5	
2	Analysis of mixture of cations	40	CO 1	K1, K2, K3,
	Analysis of a mixture of four cations containing two		CO 2	K4, K5, K6
	common cations and two rare cations. Cations to be		CO 3	
	tested.		CO 4	
	Group-I : W, Tl and Pb.		CO 5	
	Group-II : Se, Te, Mo, Cu, Bi and Cd.			
	Group-III : Tl, Ce, Th, Zr, V, Cr, Fe, Tiand U.			
	Group-IV : Zn, Ni, Co and Mn.			
	Group-V : Ca, Ba and Sr.			
	Group-VI : Li and Mg.			
3	Preparation of metal complexes and Purity	16	CO 1	K1, K2, K3,
	checking:		CO 2	K4, K5, K6
	Preparation of inorganic complexes:		CO 3	
	a. Preparation of tristhioureacopper(I)sulphate		CO 4	
	b. Preparation of potassium trioxalatechromate(III)		CO 5	
	c. Preparation of tetramminecopper(II) sulphate			
	d. Preparation of Reineck's salt			
	e. Preparation of hexathioureacopper(I)			
	chloridedihydrate			
	f. Preparation of <i>cis</i> -Potassium tri oxalate			
	diaquachromate(III)			
	g. Preparation of sodium trioxalatoferrate(III)			
	h. Preparation of hexathiourealead(II) nitrate			
	Purity Checking:			
	Preparations and estimation of one metal ion in the			
	complex (only for internal test or demo			
	experiments)			
	a. Potassium tris(oxalato)ferrate(III) - iron by			
	colorimetry or oxalate by permanganometry			
	calculation of percentage of Fe in $K_3[Fe(C_2O_4)_3]$			

metric / gravimetric analysis. d. Tris(thiourea)(sulfato)zinc(II) – Zn by complex metric analysis.
--

- 1. A. Jeya Rajendran, Microanalytical Techniques in Chemistry: Inorganic Qualitative Analysis, United global publishers, 2021.
- 2. V. V. Ramanujam, *Inorganic Semimicro Qualitative Analysis*; 3rd ed., The National Publishing Company, Chennai, 1974.
- 3. Vogel's Text book of Inorganic Qualitative Analysis, 4th ed., ELBS, London.

- 1. G. Pass, and H. Sutcliffe, Practical Inorganic Chemistry; Chapman Hall, 1965.
- 2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge University Press, 1954.

Web resources

1. https://bit.ly/3Ncpy8C

COs	CO Description	Cognitive Level
CO 1	To identify the anions and cations present in a mixture of salts.	K1, K2
CO 2	To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.	K3
CO 3	To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.	K4
CO 4	To choose the appropriate chemical reagents for the detection of anions and cations.	K5
CO 5	To synthesize coordination compounds in good quality	K6

Course Code	PCH3MC01
Course Title	MAIN GROUP ELEMENTS AND NUCLEAR CHEMISTRY
Credits	5
Hours/Week	5
Category	Major Course (MC) - Theory
Semester	III
Regulation	2022

Course Overview

- 1. This course illustrates the structure and bonding in inorganic chains, rings, and cages.
- 2. The conceptualization of structural features enables to identify the chemical properties and uses of main group elements.
- 3. This subject provides the cognitive mapping of various functional inorganic compounds along with the synthesis, theoretical description of symmetry concepts and characterization.
- 4. This course builds up a systematic learning of nuclear chemistry to understand the theory of radioactivity and applications of radioisotopes.
- 5. The numerical calculations involved in nuclear chemistry and computation of electron counts in a frame work of cluster compounds of main group elements are explicitly imparted by learning this course.

- 1. To demonstrate the basic principles of rings, cages and clusters.
- 2. To explain the structure of inorganic compounds by applying VSEPR theory.
- 3. To illustrate the different types of non -valence forces and their influence on the physical and chemical properties.
- 4. To describe the various types of nuclear reactions and nuclear models to account for the properties of nuclei.
- 5. To acquire knowledge to predict the structure of cluster compounds of main group elements.

Prerequisites	Basic knowledge of inorganic chemistry.
---------------	---

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Inorganic Cages and clusters	13	CO 1	K1, K2, K3,
	1.1 Hydrides: Classification, Boranes-classification,		CO 2	K4, K5, K6
	synthesis, reactions, structure of diborane (MOT)		CO 3	
	and higher boranes. Prediction of STYX - number		CO 4	
	of framework electrons, valence electrons count,		CO 5	
	chemical equation method from formulae.			
	Structure of polyhedral frameworks of boranes-			
	PSEPT (Wade's rule) and Lipscomb's structure of			
	B_4H_{10} , B_5H_9 , B_5H_{11} , B_6H_{10} and $B_{10}H_{14}$.			
	1.2 Carboranes: classification, structure, synthesis,			
	properties and applications of $C_2B_{10}H_{12}$.			
	Metallocarboranes - synthesis, Wade's rule and			
	PSEPT. Nomenclature, structures of CB ₅ H ₉ ,			
	$C_2B_4H_8$, $C_3B_3H_7$ and $C_4B_2H_6$. Silanes and			
	cyclopolysilanes. Hydrometallation-hydroboration			
	and hydrosilylation.			
	1.3 Alkali and alkaline earth metal complexes: α -			
	diketones and crown ether complexes. Phase			
	transfer catalyst, biological role of metal ions and			
	ionophores. Valinomycin-Na ⁺ -K ⁺ pump action.			
		10	<u> </u>	
II	Inorganic Chains, Clusters and Selected	18	CO 1	K1, K2, K3,
	Compounds of p-block elements		CO 2	K4, K5, K6
	2.1 Boron-nitrogen compounds: azaboranes,		CO 3	
	pyrazaboles, borazines, and B-N clusters.		CO 4	
	Preparation, structure, reactivity and uses of poly-		CO 5	
	and cyclophosphazenes, phosphorus-oxide and			
	phosphorus-sulfide cages. Cyclic sulfur-nitrogen			
	compounds, tetrasulfurtetranitride, polythiazyl,			
	and $S_x N_y$ (x=y, x≠y) compounds. Nitrides-			
	classification and properties.			
	2.2 Catenation: allotropes of carbon-graphite,			
	diamond, fullerenes, CNTs and graphene.			
	Chemistry of carbides. Hetero catenation-cyclic			
	silicon and phosphorous compounds.			
	2.3 Silicates: classification-ortho- and disilicates.			

r				
	Pyroxene and amphibole minerals. Structural			
5	silicates-sheet, 3D, ultramarine, zeolites.			
]	Molecular sieve structure and water treatment,			
1	feldspar, silicones- classifications, preparation,			
]	properties and uses.			
2.4	Poly acids and haloclusters: Classification,			
	structure of isopoly and heteropoly anions of W			
	and Mo. Keggin Structure. Chemistry of low			
	molecularity metal clusters - di and trinuclear			
	metal clusters; metal-metal multiple bonds –			
	$[\text{Re}_2\text{Cl}_8]^{2-}$, $[\text{W}_2\text{Cl}_9]^{3-}$, $[\text{Cr}_2\text{Cl}_2]^{3-}$, Re_3Cl_9 , Cu^{2+} and			
	Cr ²⁺ acetate complexes, Mo ₂ Cl ₈ ⁴⁻ . Chalcogenides,			
	Chevral Phases.			
III Halo	gen and Noble Gas Chemistry	13	CO 1	K1, K2, K3,
3.1	Halogen compounds of nitrogen: Preparation,		CO 2	K4, K5, K6
S	structure, reactivities and uses of nitrogen		CO 3	
t	rifluoride, tetrafluoro hydrazine, dinitrogen		CO 4	
	lifluoride, haloamines, oxohalides, and nitrogen		CO 5	
t	rifluoride oxide.			
3.2 H	Halogen oxides and oxo compounds: Preparation,			
s	structure, reactivities and uses of dichlorine			
I	nonoxide, chlorine dioxide, dibromine monoxide,			
	and iodine pentoxide, oxyfluorides trioxohalo			
f	luorides and ionic oxyhalogen species. Sulfur			
f	luorides: Synthesis and reactivity of disulfur			
	lifluoride, sulfur tetrafluoride. Structure of oxides			
(of halogen and halogen oxo compounds with			
	VSEPR model.			
3.3	Reactivity of the halides: Fluorinating agent-			
I	noderate - SF4, SbF3, SbF5, harsh -ClF, ClF3, and			
	BrF ₃ Molecular Orbitals for Cluster Compounds.			
	Kenon oxides and fluorides: Preparation, structure			
	with the aid of VSEPR model, reactivities and			
	uses of xenon trioxide, difluoride, tetrafluoride,			
	nexafluoride, xenon oxofluoride. Applications of			
	Xe compounds.			
	ear Chemistry	13	CO 1	K1, K2, K3,
4.1	Nuclear Reactions: Properties of nucleus-		CO 2	K4, K5, K6
с	alculation of size, density and atomic mass. Types		CO 3	
о			CO 4	

radioactive publican mantions Calder Friend		CO 5	
radioactive nuclear reactions, Soddy - Fajans group			
displacement law,: Bethe's notation, Natural			
radioactive series, calculation of α and β particles			
emitted-Geiger- Nuttal law, types of nuclei-			
isotope, isobar, isotone, nuclear isomers, nuclear			
stability- N/P ratio, mass defect, packing fraction,			
binding energy.			
4.2 Nuclear models: liquid drop model, semi-empirical			
mass equation and shell model - calculation of			
spin and parity of magnetic moment. Magic			
number - Femi gas and collective model. Reaction			
cross section and reaction rate. Compound Nucleus			
Theory: excitation energy, line widths and life			
times of excited states - experimental verification.			
4.3 Transuranides -synthesis of transuranic elements,			
photonuclear and thermonuclear reactions.			
Spallation, fusion, fission- Bohr yield curve. Atom			
bomb and hydrogen bomb -Nuclear reactors -			
conventional and breeder reactors. Fission energy			
vs Fission Barrier.			
4.4 Kinetics of nuclear reaction – half-life of			
radioactive substances, amount of radioactive			
substances left undisintegrated, relation between			
$t_{1/2}$ and decay constant, average life, carbon dating,			
rock dating –principle, determination of age of			
earth and minerals by various dating techniques.			
V Radioactivity and Radiation Chemistry	18	CO 1	K1, K2, K3,
5.1 Radiochemistry - Measurement of radioactivity:		CO 2	K4, K5, K6
ionization chamber, GM counters, scintillation		CO 3	
counters, particle accelerators, linear accelerators,		CO 4	
cyclotron synchrotron and Geiger-Muller counter.		CO 5	
5.2 Types of reactors-Breeder nuclear reactors and its			
components. Nuclear power plant in			
India.Applications-neutron activation analysis,			
isotopic dilution, labelling studies and nuclear			
medicine ^{99m} Tc, radiopharmaceuticals.			
5.3 Hot atom chemistry-Radiolysis of water, solvated			
electron - properties and identification of			
reactions - Hart and Boag's experiment. Pulse-			
radiolysis – Actinometry. Reprocessing of spent			

fuels: Nuclear waste, sequestering	agents for	
radioisotopes, solvent extraction and	ionic liquid	
technology.\		

Text Books

- 1. F. A. Cotton, G. Wilkinson, C. A. Murillo and M. Bochmann, *Advanced Inorganic Chemistry*; 6th ed.; Wiley Interscience: New York, 1988.
- 2. J. E. Huheey, E. A. Keiter and R. L. Keiter, *Inorganic Chemistry*; 4th ed.; Harper and Row: New York, 1983.
- 3. D. F. Shriver, P.W. Atkins and C.H. Langford, *Inorganic Chemistry*; 3rd ed.; Oxford University Press: London, 2001.
- 4. K. F. Purcell and J. C. Kotz, *Inorganic Chemistry*, Saunders: Philadelphia, 1976.
- 5. H. J. Arnikar, Essentials of Nuclear Chemistry; 4th ed., New Age International, New Delhi, 1995.
- 6. B. Douglas, D. McDaniel and J. Alexander, *Concepts and Models of Inorganic Chemistry*, 3rd edition, John Wiley & Sons, 2010.
- 7. Gary Wulfsberg, Inorganic Chemistry, Viva Books, New Delhi, 2010.

Suggested Readings

- 1. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982.
- 2. A. K. Srivatsava and P. Jain, P. Essential of Nuclear Chemistry; S. Chand, New Delhi, 1989.
- 3. G. Friedlander, G.; Kennedy, W. and J. M. Miller, *Nuclear and Radiochemistry*; 2nd ed.; John Wiley and Sons Inc., 1964.
- 4. S. Glasstone, Source Book on Atomic Energy; 2nd ed.; Van Nostr and Co. Inc., New Jersey, 1958.
- 5. A. F.Wells, Structural Inorganic Chemistry, Clarendon Press, Oxford, U.K.1984
- 6. Hari Jeevan Arnikar and Nilima Shivadatta Rajkumar, *Nuclear Chemistry Through Problems*, New Age International Publishers, New Delhi, 2018
- 7. R.D. Madan, *Satya Prakash's Modern Inorganic Chemistry*, Third Edition S. Chand Publication, New Delhi,1986
- 8. R. Sarkar, General and Inorganic Chemistry, Part II, New Central Book Agency, Kolkatta, 20056.
- 9. Radiation Chemistry, G .Hughes Oxford Chemistry Series, Editors P.W. Atkins, J. S. E Holker and A. K. Holiday, Clarendon press, Oxford (1973)

Web Resources

- 1. https://bit.ly/3OtepkR
- 2. https://bit.ly/3zSu8pu

COs	CO Description	Cognitive
		Level
CO 1	To recall concepts, laws, relationships, structures of cluster compounds in	K1, K2
	chemical bonding, solid state, main group elements, uses of P-N, P-S and S-N	
	compounds and nuclear reactions.	
CO 2	To explain the bonding, synthesis, reactions of main group compounds and	K3
	nuclear reactions.	
CO 3	To predict STYX numbers of polyhedral structures based on PSEPT and classify	K4
	nuclear reactions.	
CO 4	To discuss the chemistry of halogen, noble gas B, N, P, S-based compounds and	K5
	nuclear process.	
CO 5	To develop the structure-property correlation in allotrope of C, S and P and	K6
	calculate the number of skeletal electron pairs using Wade's rule and to nuclear	
	reactions.	

Course Code	PCH3MC02
Course Title	THERMODYNAMICS AND CHEMICAL KINETICS
Credits	6
Hours/Week	6
Category	Major Course (MC) – Theory
Semester	III
Regulation	2022

Course Overview

- 1. This course provides an insight for the interpretation of Ellingham's plot in terms of free energy and highlights the deviation from ideality through fugacity, activity and activity coefficient.
- 2. This course illustrates the significance of irreversible thermodynamics through Onsager theory and its applications to biological and non-linear systems.
- 3. Statistical approach to thermodynamic properties such as ΔG , ΔH , ΔS , and ΔU in terms of partition functions is dealt with.
- 4. A detailed treatment of the theories of chemical kinetics and the factors affecting the rates of ionic reactions in solution phase is covered through a unit.
- 5. This course deals with the kinetics of chain reactions and the methods to find the rate of fast reactions.
- 6. Aim of this course is also to impart mechanistic approach to the kinetics of polymerization. Molecular mass determination by different techniques is also taught.

- 1. To learn the principle associated with the thermodynamic systems of variable composition and partial molal properties.
- 2. To understand the application of phase rule to ternary systems and calculate the phase changes during isothermal and isobaric evaporation process.
- 3. To compare Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics and interpret its significance.
- 4. To familiarize with the theories of reaction rate to study the factors affecting the rates of the reactions for the evaluation of thermodynamic parameters.
- 5. To comprehend the mechanism and study the kinetics of chain and polymerization reactions.

|--|

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	 Classical Thermodynamics 1.1 Thermodynamic systems of variable composition: Partial molal quantities - Chemical potential. Gibbs Duhem equation - binary and ternary systems. Determination of partial molal quantities. Ellingham diagram and its significances. 1.2 Thermodynamics of real gases and real solutions: Fugacity- determination by graphical and equation of state methods - dependence on temperature, pressure and composition. Activity and activity coefficient - standard states, determination - vapour pressure, emf and freezing point methods. 1.3 Phase equilibria involving ternary systems: liquid - liquid equilibria- formation of one and two pairs of partial miscibility. Solid-liquid equilibria: formation of double salt and salt hydrates. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
Π	 Irreversible Thermodynamics 2.1 Near equilibrium process: General theory- conservation of mass and energy- entropy production in open system by heat, matter and current flow, force and flux concepts. 2.2 Onsager theory: Validity and verification – Principle of microscopic reversibility, Onsager reciprocal relations. 2.3 Thermoelectricity –Seeback and Peltier effects - Electro kinetic and thermo mechanical effects. Application of irreversible thermodynamics to biological and non-linear systems. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
III	Statistical Thermodynamics3.1Macro and micro states: Distribution of particles in different energy levels. Stirling's approximation, Derivation of Maxwell- Boltzmann statistics. Comparison of Maxwell-	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

 Boltzmann, Fermi-Dirac and Bose-Einstein statistics. 3.2 Partition functions: Canonical and molecular partition functions. Separation, multiplication theorem, thermodynamic probability. Translational, rotational, vibrational and electronic partition functions and interpretations. 3.3 Statistical approach to Thermodynamic properties: pressure, internal energy, entropy, enthalpy, Gibbs function, Helmholtz function, residual entropy, equilibrium constant, average energies and equipartition principle. Heat capacity of mono and diatomic gases - <i>ortho</i> and <i>para</i> hydrogen. Heat capacity of solids- Einstein and Debye models. 			
 Kinetics of reactions in gas and solutions phases 4.1 Theories of reaction rates - Kinetic theory of collisions - bimolecular, unimolecular - Lindemann - Christiansen hypothesis, Lindemann - Hinshelwood, RRK and Rice Ramsperger-Kassel-Marcus (RRKM) theories. Bimolecular reactions in gas phase - atoms and free radicals, potential energy surfaces. Conventional transition state theory - evaluation of thermodynamic parameters of activation, application of ARRT to reactions between atoms, molecules and atoms and molecules- time and true order, evaluation of kinetic parameters. 4.2 Factors determining reaction rates in solution – solvation- ionic strength - primary and secondary salt effects, dielectric constant–concept of electrostriction, hydrostatic pressure - volume of activation. 4.3 Enzyme catalysis – one and two substrates - Michaelis-Menten equation-evaluation of kinetic parameters - Lineweaver-Burk, Eadie-Hofstee and Hanes-Woolf plots. Turn over number. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

V	Kinetics of complex and fast reactions	18	CO 1	K1, K2, K3,
	5.1 Rate expressions for opposing, parallel and		CO 2	K4, K5, K6
	consecutive reactions; Chain reactions – chain		CO 3	, ,
	length, Rice-Herzfeld pyrolysis of acetaldehyde,		CO 4	
	hydrogen-halogen (thermal and photochemical)		CO 5	
	reaction, Gas phase auto oxidation; explosion			
	and explosion limits. Oscillatory reactions-			
	Belousov-Zhabotinsky reactions.			
	5.2 Kinetics of polymerization – Free-Radical,			
	cationic, anionic polymerizations –			
	polycondensation.			
	5.3 Flow techniques - relaxation theory and			
	relaxation techniques - Temperature, Pressure,			
	electric field and magnetic field jump methods,			
	flash photolysis and pulse radiolysis.			
Text Bo	oks	4		
1. J. R	ajaram and J.C. Kuriacose, Thermodynamics For Stu	dents of Che	mistry, 2r	nd edition, S.L.N.
Cha	nd and Co., Jalandhar, 1986.			
	. Klotz and R.M. Rosenberg, Chemical thermodynamics fornia, 1972.	, 6th edition,	W.A. Ber	njamin Publishers,
3. M.C	C. Gupta, Statistical Thermodynamics, New Age Internat	ional, Pvt. Lto	l., New D	elhi, 1995.
4. K.J.	Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprin	nt - 2013.		
5. J. R	ajaram and J.C. Kuriokose, Kinetics and Mechanisms	of chemical	transform	nation, Macmillan
Indi	a Ltd, Reprint - 2011.			
6. V.R	6. V.R. Gowariker, Polymer Science, Wiley Eastern, 1995.			
Suggest	ed Readings:			
	1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd.,			
	New Delhi, 1999.			
2. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990.				
	3. S.H. Maron And J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974			
Web Re				
1. <u>https:</u> /	//nptel.ac.in/courses/104/103/104103112/			
	2. <u>https://bit.ly/3tL3GdN</u>			

3. https://bit.ly/39IWesL

4. https://bit.ly/3OmPvne

5. https://nptel.ac.in/courses/104103112

COs	CO Description	Cognitive
		Level
CO 1	To define and explain the classical and statistical concepts of thermodynamics and	K1, K2
	chemical kinetics.	
CO 2	To apply and relate the classical and statistical concepts of thermodynamics to	K3
	study the kinetics of chemical reactions.	
CO 3	To deduce various expressions for the determination of thermodynamic and	K4
	kinetic parameters.	
CO 4	To compare the thermodynamic properties of the system and predict the	K5
	mechanism of chemical reactions.	
CO 5	To formulate and calculate the thermodynamic and kinetic parameters for real	K6
	gases, real solutions and chemical reactions.	

Course Code	РСН3МС03
Course Title	MOLECULAR SPECTROSCOPY
Credits	5
Hours/Week	5
Category	Major Course (MC) – Theory
Semester	III
Regulation	2022

Course Overview

- 1. Molecular spectroscopy course deals with the interaction of molecules with various regions of electromagnetic spectrum.
- 2. Computation of wavelength maximum, rotational and vibrational parameters from the respective absorption spectra.
- 3. The interpretation of first and second order NMR spectra of compounds and an introduction to 2D NMR such as COSY, NOESY is also covered.
- 4. This course explores the structural elucidation of compounds by means of combined spectral techniques such UV, VIS, IR, Mass and NMR.
- 5. This course deals with the interaction of quadrupole moment and electric field gradient. The oxidation state of high spin and low spin Fe and Sn compounds is determined through the interpretation of Mossbauer spectra.

- 1. To understand the influence of rotation and vibrations on the spectra of the polyatomic molecules.
- 2. To study the principle of Raman spectroscopy and fragmentation patterns in Mass spectroscopy.
- 3. To highlight the significance of Franck-Condon principle to interpret the selection rule, intensity and types of electronic transitions and the aspects of fluorescence spectroscopy.
- 4. To interpret the first and second order NMR spectra in terms of splitting and coupling patterns using correlation techniques such as COSY, HETCOR, NOESY.
- 5. To carry out the structural elucidation of molecules using different spectral techniques.

Prerequisites	Basic knowledge of chemistry

UNIT	CONTENT	HOURS	COs	COGNITIVE
-			<u> </u>	LEVEL
Ι	Rotational and Vibrational Spectroscopy	16	CO 1	K1, K2, K3,
	1.1 Diatomic molecules as rigid rotors -intensity of		CO 2	K4, K5, K6
	spectral lines, selection rules, effect ofisotopic		CO 3	
	substitution. Diatomic molecules as non-rigid		CO 4	
	rotors -rotational spectra of linear and symmetric top polyatomic molecules.		CO 5	
	1.2 Vibrating diatomic molecule -energy of diatomic molecules, simple harmonic and anharmonic oscillator –energylevels, transitions. Diatomic			
	vibrating rotator - P, Q, R branches.			
	1.3 Vibrations of polyatomic molecules -Symmetry and fundamental vibrations, overtones, combination, difference bands. Influence of rotations on the spectra of polyatomic molecules - parallel and perpendicular vibrations in linear and symmetric top molecules. Interpretation of IR spectra of organic compounds.			
II	Raman and Mass spectroscopy	14	CO 1	K1, K2, K3,
	2.1 Principle of Raman spectroscopy, selection rules.		CO 2	K4, K5, K6
	Rotational and vibrational Raman spectra.		CO 3	,,
	Resonance-enhanced Raman spectroscopy:		CO 4	
	Principle and applications.		CO 5	
	 2.2 Mass Spectrometry (MS): Principle, basic fragmentation types and rules. Ionisation techniques - Principle of Electron spray ionisation (ESI)-MS, Matrix-assisted laser desorption / ionisation (MALDI)-MS. Tandem mass spectrometry – spectral patterns – protein, DNA, RNA and polymers. 			
III	Absorption and emission spectroscopy	15	CO 1	K1, K2, K3,
	3.1 Electronic spectra of diatomic molecules: Born-		CO 2	K4, K5, K6
	Oppenheimer approximation, Franck Condon		CO 3	<i>, ,</i>
	Principle, selection rules, intensity and types of		CO 4	
	Finiciple, selection fules, intensity and types of		1004	

transitions.]
3.2 Characterization of organic compounds:			
application of Woodward-Fieser rules to			
conjugated dienes, α , β - unsaturated carbonyl			
compounds, benzene and its substituted			
derivatives, polycyclic aromatic hydrocarbons.			
3.3 Fluorescence spectroscopy – Jablonski diagram,			
fluorophores, spectral, time-resolved			
fluorescence and quenching.			
IV NMR and EPR spectroscopy	16	CO 1	K1, K2, K3,
4.1 Basic concepts, Bloch equations, chemical shift,		CO 2	K4, K5, K6
spin-spin coupling, Chemical and magnetic		CO 3	
equivalence. Relaxation mechanisms.		CO 4	
Applications of T1 and T2 measurements, NMR		CO 5	
of paramagnetic compounds: isotropic, contact			
and pseudo contact shift. Shift reagents in NMR.			
4.2 Coupling constants: mechanism of coupling, first			
order and second order effects, Notation for spin			
systems. Fourier Transform (FT) and 2D NMR			
spectroscopy: Principle, Free induction decay			
(FID). Correlation spectroscopy (COSY), Hetero-			
COSY (HETCOR) and Nuclear Overhauser effect			
spectroscopy (NOESY). ¹³ C, ¹⁹ F and ³¹ P NMR			
spectra of typical examples. Principle of solid- state NMR.			
4.3 EPR spectra of anisotropic systems - anisotropy in			
g-value, causes of anisotropy, anisotropy in			
hyperfine coupling, hyperfine splitting caused by			
quadrupole nuclei. Zero-field splitting (ZFS) and			
Kramer's degeneracy. Applications of EPR to			
organic and inorganic systems.			
4.4 Structural elucidation of organic compounds by			
combined spectral techniques.			
V NQR and Mossbauer Spectroscopy	14	CO 1	K1, K2, K3,
5.1 Principle of Nuclear quadrupole resonance (NQR)		CO 2	K4, K5, K6
spectroscopy - quadrupole nucleus and its		CO 3	
interaction with electric field gradient, nuclear		CO 4	
orientations, asymmetry parameter, quadrupole		CO 5	

	energy levels, transitions in spherical axial and			
	non-axial symmetric fields, effect of magnetic			
	field.			
	5.2 Applications of NQR spectroscopy: quadrupole			
	coupling constant and its interpretation, structural			
	information from NQR spectra of haloorganic			
	compounds, point group symmetry and hydrogen			
	bonding.			
	5.3 Principle of Mossbauer spectroscopy: Doppler			
	shift, recoil energy. Isomer shift, quadrupole			
	splitting, magnetic interactions. Applications:			
	Mossbauer spectra of high and low-spin Fe and			
	Sn compounds.			
Tex	xt Books			
1.	C. N. Banwell and E. M. McCash, Fundamentals of Molecula	ar Spectrosc	copy, 4 th 1	Ed., Tata McGraw
	Hill, New Delhi, 2000.			
2.	R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compounds, 6th Ed.,			
	John Wiley & Sons, New York, 2003.	·		-
3.	W. Kemp, Applications of Spectroscopy, English Language Bo	ook Society	, 1987.	
4.	D. H. Williams and I. Fleming, Spectroscopic Methods i	in Organic	Chemist	try, 4 th Ed., Tata
	McGraw-Hill Publishing Company, New Delhi, 1988.	Ũ		•
5.	D. Pavia, G. M. Lampman, and G.S. Kriz, Introduction to Sp	pectroscop	v, 3^{rd} Ed.	, John Vondeling,
	Florida, 2006.	1 1.	, , ,	, U,
6.	K. V. Raman, R. Gopalan and P. S. Raghavan, Molecular Spec	ctroscopy,	Thomson	and Vijay Nicole,
	Singapore, 2004.	1.77		
7.	R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders: Philad	delphia. 199	92.	
8.	G. M. Bancroft, <i>Mössbauer spectroscopy</i> , McGraw Hill, Lond	1		
9.	Harald Günther, NMR Spectroscopy, John Wiley & Sons, Sec		, 2010.	
Sug	ggested Readings:			
1.	P.W. Atkins and J. de Paula, Physical Chemistry, 7th Ed., Oxfo	ord Univers	ity Press,	Oxford, 2002.
2.	I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New York, 1974.			
3.	A. Rahman, Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag, New York, 1986.			
4.	K. Nakamoto, Infrared and Raman Spectra of Inorganic and coordination Compounds, PartB: 5th			
	ed., John Wiley& Sons Inc., New York, 1997.		_	
5.	J. A. Weil, J. R. Bolton and J. E. Wertz, Electron Paramag	gnetic Reso	nance; W	Viley Interscience,
	1994.	-		- ,
6.	L.D. Field, S. Sternhell, and J. R. Kalman, Organic Structure	es from Spec	ctra, 3 rd I	Ed., John Wiley &
	Sons Ltd England, 2003.	_		-
7.	J. W. Akitt, NMR and Chemistry, 3rd,ed., Chapman & Hall, Lo	ondon,1992	2.	

7. J. W. Akitt, *NMR and Chemistry*, 3rd,ed., Chapman & Hall, London, 1992.

- Jack K. Becconsall, Basic one and two dimensional NMR Spectroscopy, 4th Ed., Wiley VCH,2005. 8.
- 9. R. V. Parish, NMR, NQR, EPR, and Mossbauer Spectroscopy in inorganic chemistry, Ellis Horwood, London.
- 10. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Metal ions, Oxford University Press, 1970.
- Horst Friebolin, Basic One and Two dimensional NMR spectroscopy, Wiley -VCH, Fourth edition, 11. 2005.

- https://bit.ly/3Oqo24t 1.
- https://bit.ly/3HDfeW6 2.
- 3. https://bit.ly/3tPf08P
- https://nptel.ac.in/courses/104101117 4.

	Course Outcomes (COs) and Cognitive Level Mapping			
COs	CO Description	Cognitive		
		Level		
CO 1	To understand the importance of various branches of electromagnetic spectrum	K1, K2		
	and its applications in the determination of spectroscopic properties.			
CO 2	To apply the spectral data such as vibrational frequencies, absorption maxima,	K3		
	chemical shifts, coupling constants and splitting patterns for structural elucidation			
	of compounds.			
CO 3	To calculate the various spectral parameters and illustrate the types of transitions,	K4		
	splitting and interactions for structural determination.			
CO 4	To outline spectral/splitting patterns using the principles of different branches of	K5		
	spectroscopy to predict the plausible structural elucidation of compounds.			
CO 5	To develop the analytical skills in elucidating the structure of compounds using	K6		
	combined spectral techniques such as UV-Visible, IR, Mass and NMR.			

Course Code	PCH3MC04
Course Title	PHYSICAL CHEMISTRY PRACTICALS - I
Credits	2
Hours/Week	4
Category	Major Course (MC) – Lab
Semester	III
Regulation	2022

Course Overview

- 1. This practical paper involves the aspects of thermodynamics, equilibria, and kinetics.
- 2. This paper deals with the determination of rate constant, order and Arrhenius parameters of a chemical reaction.
- 3. The influence of temperature, ionic strength and concentration that affect the rates of chemical reactions is studied kinetically.
- 4. The experimental determination of Nernst distribution coefficient, equilibrium constant and verification of Freundlich adsorption isotherm are performed in this course.
- 5. The application of phase rule to two component system is studied experimentally by constructing phase diagram.

- 1. To verify Freundlich adsorption isotherm and Bronsted-Bjerrum equations.
- 2. To evaluate the rate constant, energy of activation and pre-exponential factor for a reaction following pseudo first order kinetics.
- 3. To compare the strength of acids by studying the kinetics of acid catalyzed ester hydrolysis.
- 4. To construct the phase diagram of two component system forming congruent melting solid and find its eutectic temperatures and compositions.
- 5. To determine the order of iodination of acetone and persulphate oxidation reactions.

Prerequisites	Basic knowledge on Physical Chemistry

ЕХРТ	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
1	1. Verification of Freundlich adsorption	60	CO1	K1, K2, K3,
	isotherm - Study of adsorption acetic acid or		CO2	K4, K5, K6
	oxalic acid on charcoal and determination of		CO3	
	concentration of the given acid.		CO4	
	2. Construction of Phase diagram for two		CO5	
	components - Compound forming systems:			
	Diphenylamine – Benzophenone.			
	3. Determination of Nernst distribution			
	coefficient, equilibrium constant for the			
	formation of potassium triiodide from iodine			
	and KI and the concentration of unknown			
	potassium iodide solution.			
	4. Comparison of acid strengths of two acids			
	using acid catalysed hydrolysis of methyl			
	acetate.			
	5. Kinetic study of acetone and iodine in acidic			
	medium and the determination of order with			
	respect to acetone and iodine.			
	6. Determination of order of saponification of			
	ethyl acetate by sodium hydroxide.			
	7. Determination of order of autocatalytic			
	reaction between potassium permanganate and			
	oxalic acid.			
	8. Study of primary salt effect on the kinetics of			
	ionic reactions and verification of the			
	Bronsted relationship (iodide ion is oxidized			
	by persulphate ion).			
	9. Determination of energy of activation,			
	Arrhenius frequency factor and activation			
	parameters ($\Delta H^{\#}$, $\Delta S^{\#}$ and $\Delta G^{\#}$) for the acid			
	catalysed hydrolysis of an ester.			
	10. Determination of the pseudo first order rate			
	constant for the kinetics of inversion of cane			
	sugar using polarimeter.			
	11. Polarimetric study of the effect of solvent on			
	the optical rotation of camphor.			
	12. Determination of molar refractions of pure			

	liquids and estimation of concentration of				
	glucose using Abbe's refractometer.				
	13. Determination of the molecular weight of				
	polymer by viscometer.				
	14. Study of enzyme catalysis using uv-visible				
	spectrophotometer.				
	spectrophotometer.				
Text Books					
1. B. Viswan	athan and P.S.Raghavan, Practical Physical Chemistr	ry, Viva Bool	ks, New I	Delhi, 2009.	
2. Sundaram	, Krishnan, Raghavan, Practical Chemistry (Part II), S	S. Viswanath	an Co. Pv	rt., 1996.	
3. V.D. Atha	wale and Parul Mathur, Experimental Physical Che	mistry, New	Age Inte	rnational (P) Ltd.,	
New Delh			U		
Suggested Readings					
1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 2001.					
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical Chemistry, 8th edition,				
	McGraw Hill, 2009.				
3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 1987.					
4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual, Narosa Publishing House Pvt, Ltd.,					
New Delhi, 2014.					
Web Resour	rces				
	it 1v/30ESE7t				

- 1. <u>https://bit.ly/3QESF7t</u>
- 2. <u>https://bit.ly/3QANOnX</u>

COs	CO Description	
		Level
CO 1	To recall the principles associated with various physical chemistry experiments.	K1, K2
CO 2	To scientifically plan and perform all the experiments	К3
CO 3	To observe and record systematically the readings in all the experiments.	K4
CO 4	To calculate and process the experimentally measured values and compare with graphical data.	K5
CO 5	To interpret the experimental data scientifically to improve students efficiency for societal developments.	K6

Course Code	PCH4MC01
Course Title	ORGANIC SYNTHESIS AND PHOTOCHEMISTRY
Credits	6
Hours/Week	5
Category	Major Course (MC) – Theory
Semester	IV
Regulation	2022

Course Overview

- 1. Organic synthesis covers the fields of advanced organic chemistry involving natural products and medicinal chemistry.
- 2. The course provides a detailed exposure on special reagents and special types of reactions in organic chemistry.
- 3. The course aims at providing advanced knowledge in planning the synthesis of organic molecules from simple starting materials.
- 4. This course also reviews the photochemistry of various types of organic reactions.
- 5. The overall focus of the course is the planning of synthesis of any chosen target molecule, use of various selected reagents, and their application in the organic synthesis of medicinal compounds and natural products.

Course Objectives

- 1. To understand the molecular complexity of carbon skeletons and the presence of functional groups and their relative positions.
- 2. To study various synthetically important reagents for any successful organic synthesis.
- 3. To apply disconnection approach and identifying suitable synthons to effect successful organic synthesis.
- 4. To learn the concepts of pericyclic reaction mechanisms.

5. To gain the knowledge of photochemical organic reactions.

Prerequisites	Knowledge on Organic Chemistry
---------------	--------------------------------

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Reagents for Organic Synthesis	13	CO 1	K1, K2, K3, K4,
	1.1 Lithium diisopropylamine (LDA),		CO 2	K5, K6
	Azobisisobutyronitrile (AIBN), Sodium		CO 3	
	cyanoborohydride (NaBH ₃ CN), meta-		CO 4	
	Chloroperbenzoic acid (m-CPBA), Dimethyl		CO 5	
	aminiopyridine (DMAP), n-Bu ₃ SnD, Triathylamina (TEA) Diagahiayala[5,4,0]undaa			
	Triethylamine (TEA), Diazobicyclo[5.4.0]undec- 7-ene (DBU), Diisopropylazodicarboxylate			
	(DIAD), Diethylazodicarboxylate (DEAD), <i>N</i> -			
	bromosuccinimide (NBS), Trifluoroacetic acid			
	(TFA), Tetramethyl piperiridin-1-oxyl (TEMPO),			
	Phenyltrimethylammonium tribromide (PTAB).			
	1.2 Diazomethane and Zn-Cu, Diethyl maleate			
	(DEM), Copper diacetylacetonate (Cu(acac) ₂),			
	TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate (PCC),			
	Pyridinium dichromate (PDC), Meisenheimer			
	complex.			
II	Modern Synthetic Reactions	11	CO 1	K1, K2, K3, K4,
	2.1 Suzuki coupling, Heck reaction, Negishi reaction.		CO 2	K5, K6
	Baylis-Hillman reaction, Henry reaction Nef		CO 3	
	reaction, Kulikovich reaction, Ritter reaction,		CO 4	
	Sakurai reaction, Tishchenko reaction, Ugi		CO 5	
	reaction. Brook rearrangement, Tebbe			
	olefination, Click reactions. Metal mediated C-C			
	and C-X coupling reactions: Stille, Sonogashira,			
	Nozaki Hiyama, Buchwald-Hartwig, Ullmann			
	coupling reactions, directed orthometalation.			
	2.2 Electro-organic synthesis: Electro-oxidation and - reduction reactions.			
III	Organic Synthetic Methodology	22	CO 1	K1, K2, K3, K4,
	3.1 Retrosynthetic analysis; Alternate synthetic		CO 1 CO 2	K1, K2, K3, K4, K5, K6
	routes. Synthesis of organic mono and		CO 2	,
	bifunctional compounds via disconnection		CO 4	
	approach. Key intermediates, available starting		CO 5	
	materials and resulting yields of alternative			

	 methods. 3.2 Convergent and divergent synthesis, Synthesis based on umpolung concepts of Seebach. Protection of hydroxyl, carboxyl, carbonyl, thiol and amino groups. Illustration of protection and deprotection in synthesis. 3.3 Control elements: Regiospecific control elements. Use of protective groups, activating groups, and bridging elements. Stereospecific control elements and transposition. 			
IV	 Pericyclic Reactions 4.1 Woodward Hoffmann rules; The Mobius and Huckel concept, FMO, PMO method and correlation diagrams. 4.2 Cycloaddition and retrocycloaddition reactions; [2+2], [2+4], [4+4, Cationic, anionic, and 1,3- dipolar cycloadditions. Cheletropic reactions. ; Electrocyclization and ring opening reactions of conjugated dienes and trienes. Sigmatropic rearrangements: (1,3), (1,5), (3,3) and (5,5)-carbon migrations, degenerate rearrangements. Ionic sigmatropic rearrangements. Group transfer reactions. Regioselectivity, stereoselectivity and periselectivity in pericyclic reactions. 	17	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
V	 Organic Photochemistry 5.1 Photochemical excitation: Experimental techniques; electronic transitions; Jablonskii diagrams; intersystem crossings; energy transfer processes; Stern Volmer equation. 5.2 Reactions of electronically excited ketones; π→π* triplets; Norrish type-I and type-II cleavage reactions; photo reductions; Paterno-Buchi reactions; photochemistry of α,β-unsaturated ketones; cis-trans isomerisation. 5.3 Photon energy transfer reactions, Photo cycloadditions, Photochemistry of aromatic compounds; photochemical rearrangements; 	12	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5. K6

photo-stationery state; di-π-methane
rearrangement; Reaction of conjugated
cyclohexadienone to 3,4-diphenyl phenols;
Barton's reactions.
Darton's reactions.

Text Books

- 1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed, Tata McGraw-Hill, New York, 2003.
- 2. J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and sons, 2007.
- 3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel publishing house, 1990.
- 4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University Press, Second Edition, 2016.
- 5. M. B. Smith, Organic Synthesis 3rd edn, McGraw Hill International Edition, 2011.
- 6. V.K. Ahluwalia and Renu Aggarwal, Organic Synthesis: Special Techniques, Narosa Publishing House, 2001.
- 7. Ian Fleming, Pericyclic Reactions 2nd edn, Oxford Science Publications, 2015.
- 8. R. K. Kar, Frontier Orbital and symmetry controlled pericyclic reactions, Books and Allied (P) Ltd, Kolkotta, 2010.
- 9. K. K. Rohatgi-Mukerjee, Fundamentals of Photochemistry, Revised Edition, New Age International Pvt Ltd, New Delhi.

Suggested Readings

- 1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.
- 2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press, Great Britain, 2004.
- 3. W. Caruthers, Some Modern Methods of Organic Synthesis 4thedn, Cambridge University Press, Cambridge, 2007.
- 4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc, 1972.
- 5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic Reactions, New Age International Publishers, New Delhi, 2012.

- 1. https://rushim.ru/books/praktikum/Monson.pdf
- 2. https://bit.ly/3QBkNso
- 3. https://bit.ly/39FKo2x
- 4. https://bit.ly/3b5cRz4

COs	CO Description	Cognitive
		Level
CO 1	To recall the basic principles of organic chemistry and to understand the various	K1, K2
	reactions of organic compounds with reaction mechanisms.	
CO 2	To understand the versatility of various special reagents and to correlate their	K3
	reactivity with various reaction conditions.	
CO 3	To implement the synthetic strategies in the preparation of various organic	K4
	compounds.	
CO 4	To predict the suitability of reaction conditions in the preparation of tailor made	K5
	organic compounds.	
CO 5	To design and synthesize novel organic compounds with the methodologies learnt	K6
	during the course.	

Course Code	PCH4MC02
Course Title	ELECTROCHEMISTRY
Credits	7
Hours/Week	6
Category	Major Course (MC) - Theory
Semester	IV
Regulation	2022

Course Overview

- 1. This course describes various aspects of electrochemistry such as theories of electrolytes, structure of double layer, electrodics of elementary and multi electron systems.
- 2. It highlights the evaluation of thermodynamic parameters, importance of bio electrochemistry, electroanalytical techniques, fuel cells and batteries.
- 3. This course explains the derivation and the applications of Nernst, Butler-Volmer and Tafel equations for electrochemical systems.
- 4. The vital role of rate determining step, stoichiometric number and transfer coefficients in proposing the mechanism for electrochemical reactions is also covered.
- 5. The significance of Pourbiax and Evan's diagram in corrosion studies and passivation of metals is dealt with.

- 1. To understand the behavior of electrolytes in solution in terms of conductance, ionic atmosphere, interactions, dissociations, etc.
- 2. To familiarize with the structure of the electrical double layer of different models with its applications and limitations.
- 3. To distinguish between Ohmic and non-Ohmic behavior of electrodes in terms of the relationship between current density and over potential.
- 4. To offer a plausible mechanism for electrochemical reactions based on anodic and cathodic symmetry factors and predict the order of electrochemical reactions.
- **5.** To infer the importance of the different types of over voltages and its applications in electroanalytical techniques.

Prerequisites	Knowledge in electrochemistry

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Ionics	20	CO 1	K1, K2, K3,
	1.1. Arrhenius theory -limitations, van't Hoff factor		CO 2	K4, K5, K6
	and its relation to colligative properties.		CO 3	
	Deviation from ideal behavior. Ionic activity, ion		CO 4	
	solvent and ion-ion interactions. Born equation.		CO 5	
	Debye-Huckel theory of strong electrolytes.			
	Debye-Huckel length and potential around a			
	central ion, its interpretation. Debye-Huckel-			
	Bjerrum model. Debye-Huckel limiting law –			
	derivation, modifications and applications.			
	1.2. Electrolytic conduction-Debye-Huckel-Onsager			
	treatment of strong electrolyte-experimental			
	verification and limitations. Evidence for ionic			
	atmosphere. Ion association and triple ion			
	formations. Anomalous conductance of non-			
	aqueous electrolytic solution. Abnormal mobility			
	of hydrogen and hydroxyl ions.			
	1.3 Evaluation of thermodynamic quantities– ΔG , ΔH			
	and ΔS . Calculation of K _a , K _b , K _{sp} , K _w , K _h and pH			
	using emf data.			
	C			
II	Electrical Double Layer and Bio- electrochemistry	17	CO 1	K1, K2, K3,
	2.1 Interfacial phenomena -Evidences for electrical		CO 2	K4, K5, K6
	double layer, polarisable and non-polarisable		CO 3	
	interfaces. Electrocapillarity -Lipmann's		CO 4	
	equation, electro capillary curves. Electro-kinetic		CO 5	
	phenomena electro-osmosis, electrophoresis,			
	streaming and sedimentation potentials, mention			
	of colloidal and poly electrolytes.			
	2.2 Structure of electrical double layer: Helmholtz-			
	Perrin, Guoy-Chapmann, Stern model and Jellium			
	models of electrical double layer-Applications			
	and limitations.			
	2.3 Bio-electrochemistry: Introduction, cells and			
	membranes, membrane potentials, theory,			
	interfacial electron transfer in biological systems,			
	adsorption of proteins onto metals from solution,			
	ausorption of proteins onto metals from solution,			

III	 electron transfer from modified metals to dissolved protein in solution, enzymes as electrodes, electrochemical enzyme-catalysed oxidation of styrene. Goldmann equation. Electrodics of Elementary Electrode Reactions 3.1 Behavior of electrodes: Standard electrodes and electrodes at equilibrium. IUPAC convention for anodic and cathodic currents, condition for the discharge of ions. Ohmic behavior of electrodes. Study of electrode reaction. Kinetic expression of Faraday's law. Nernst equation. Reaction resistance-polarisable and non-polarisable 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
	 electrodes. The model of three electrode system, over potential. Electron transfer- under zero field, at an interface and under electric field. 3.2. Rate of electro chemical reactions: Rates of simple elementary reactions (eg. Hydrogen evolution). Butler-Volmer(B-V) equation-exchange current density, net current density and symmetry factor. Influence of over potential on current density, modifications of B-V equation – Ohmic equation, sine hyperbolic function, Faradic rectification, Low and high field approximations. Tafel equations and Tafel plots. 			
IV	 Electrodics of Multistep Multi Electron System 4.1 Rates of multi-step electrode reactions, Butler - Volmer equation for a multi-step reaction. Rate determining step, electrode polarization and depolarization. Transfer coefficients, its significance, determination, its relation with symmetry factors – elementary and multi-step reactions. Low and high field approximations. Stoichiometric number. 4.2 Elucidation of electro-chemical reaction mechanisms-rate expressions, order, and surface coverage. Reduction of I³⁻, Fe²⁺, and dissolution of Fe to Fe²⁺. 4.3. Overvoltage- Chemical and electro chemical, 	20	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

		1		
	Phase, activation and concentration over			
	potentials. Evolution of oxygen and hydrogen at			
	different pH. Corrosion and passivation of			
	metals-rate, polarization curves, Pourbiax and			
	Evan's diagrams.			
V	Concentration Polarization and Electroanalytical	15	CO 1	K1, K2, K3,
	Techniques		CO 2	K4, K5, K6
	5.1 Modes of Transport of electro active species -		CO 3	
	Diffusion, migration and hydrodynamic modes.		CO 4	
	The role of supporting electrolytes. Polarography-		CO 5	
	principle and applications. Principle of square			
	wave polarography. Cyclic voltammetry- anodic			
	and cathodic stripping voltammetry and			
	differential pulse voltammetry.			
	5.2 Electrochemical processes as source of energy			
	storage: Batteries - types, capacity,			
	charging/discharging profile, efficiency			
	calculations (coulombic, voltage and energy).			
	Ragone plot comparing power density vs. energy			
	density of batteries. Lead-acid battery, Metal-air			
	batteries, Sodium and lithium ion batteries and			
	redox flow batteries.Mechanism of charge			
	storage: intercalation/deintercalation, conversion			
	and alloying. Capacitors- mechanism of energy			
	storage, charging at constant current and constant			
	voltage.			
	5.3 Energy production systems: Fuel Cells:			
	classification, alkaline fuel cells, phosphoric acid			
	fuel cells, high temperature fuel cells, Solid			
	Oxide Fuel Cells (SOFC) and solid polymer			
	electrolyte fuel cells.			
Text B	ooks	-	-	
1. E	D. R. Crow, Principles and applications of electrochemis	stry, 4theditio	on, Chapr	nan & Hall/CRC,
2	2014.			
2. J	. Rajaram and J.C. Kuriakose, Kinetics and Mechanism	of chemical	transform	ations Macmillan
	ndia Ltd., New Delhi, 2011.			
	Glasstone, Electro chemistry, Affiliated East-West Press,	, Pvt., Ltd., N	lew Delhi	, 2008.
	3. Viswanathan, S. Sundaram, R. Venkataraman,			

Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai, 2007.

- 5. Joseph Wang, Analytical Electrochemistry, 2ndedition, Wiley, 2004.
- 6. H. K. Moudgil, Text book of Physical Chemistry, PHI Learning Pvt Ltd, 2010

Suggested Readings

- 1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry,vol.1 and2B, Springer, Plenum Press, New York, 2008.
- 2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A,Springer, Plenum Press, New York, 2008.
- 3. Philip H. Rieger, Electrochemistry, 2ndedition, Springer, New York, 2010.
- 4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
- 5. K.L. Kapoor, A Text book of Physical chemistry, volume-3, Macmillan, 2001.
- 6. Allen J. Bard and Larry R. Faulkner, Electrochemical Methods, 2nd edition, John Wiley & Sons, INC

- 1. https://bit.ly/3zWfT34
- 2. <u>https://bit.ly/3y4FDsO</u>
- 3. <u>https://bit.ly/3bjCWuA</u>
- 4. <u>https://youtu.be/kDt8Hzr9ZnU</u>
- 5. https://nptel.ac.in/courses/104/106/104106129/
- 6. <u>https://nptel.ac.in/courses/103/102/103102015/</u>

COs	CO Description	Cognitive
		Level
CO 1	To understand the behaviour of electrolytes in solution, importance of electrode	K1, K2
	kinetics and compare the structures of electrical double layer of different models.	
CO 2	To apply the Butler-Volmer and Tafel equations to predict the kinetics of	К3
	electrode reactions and to classify different electroanalytical techniques.	
CO 3	To evaluate different thermodynamic parameters and illustrate the types of	K4
	batteries, mechanism of corrosion, and theory of membrane potentials.	
CO 4	To outline the theories of electrolytes, importance of electrical double layer,	K5
	electrodics of elementary and multistep multi electron system and to evaluate the	
	activity coefficient of electrolytes	
CO 5	To develop the knowledge on novel energy storage devices and formulate the	K6
	structure of electrical double layer and infer the electrochemical reaction	
	mechanism.	

Course Code	PCH4MC03
Course Title	PHYSICAL CHEMISTRY PRACTICALS - II
Credits	2
Hours/Week	4
Category	Major Course (MC) – Lab
Semester	IV
Regulation	2022

Course Overview

- 1. This course involves the determination of K_a and verification of the validity of Onsager's theory of limiting law.
- 2. Experimental determination of solubility product and acid strength by conductometric titrations are performed in this course.
- 3. Potentiometric method is adopted for the determination of the strength of Fe(II), dissociation constants of weak acids and thermodynamic functions using emf data.
- 4. The course deals with the measurements of pH of solutions by pH metry and colorimetry.
- 5. This course provides an opportunity to perform experiments using analytical instruments such as UV-VIS, FT-IR and cyclic voltammetry and interpret the results scientifically.

Course Objectives:

- 1. To determine the amount of chloride and iodide present in a mixture of halides by potentiometric method and solubility product of a sparingly soluble salt by conductance method.
- 2. To carry out the determination of the dissociation constants of mono basic and dibasic acids potentiometrically.
- 3. To perform redox titrations potentiometrically and acid base titrations conductometrically.
- 4. To calibrate pH meter and measure pH of various buffer solutions.
- 5. To have hands on training on analytical instruments such as UV-VIS, FT-IR and cyclic voltammetry.

Prerequisites

Basic knowledge on Physical Chemistry

EXPERIME	CONTENT	HOURS	COs	COGNITIVE
NTS				LEVEL
Conductome	1. Determination of the equivalent conductance	60	CO1	K1, K2, K3,
try	at different concentrations and to examine		CO2	K4, K5, K6
	the validity of the Onsager's theory as		CO3	
	limiting law at high dilutions for a strong		CO4	
	electrolyte.		CO5	
	2. Determination of the amount of HCl and			
	CH ₃ COOH present in a mixture by			
	conductometric titration using standard			
	NaOH solution.			
	3. Comparison of the relative strengths of weak			
	acids by conductance method.			
	4. Determination of solubility product of			
	inorganic compounds by conductric			
	precipitation titration.			
	5. Determination of hydrolysis constant of			
	freshly prepared and dried aniline			
	hydrochloride by conductometry.			
	1. Determination of the amount of KCl and KI			
	present in a mixture by potentiometric			
	titration.			
Detentionstr	2. Determination of pK_{a1} and pK_{a2} of a weak			
Potentiometr	dibasic acid by potentiometry.			
У	3. Determination of dissociation constant of weak acid by potentiometry.			
	4. Determination of the amount of KI using			
	KMnO ₄ by potentiometric redox titration.			
	5. Estimation of thermodynamic functions from			
	EMF data.			
	1. Calibration of a pH meter and measurement			
	of pH of different buffer solutions.			
	2. Determination of pH of the given solution			
	with the help of indicators using buffer			
	solutions and by colorimetric method.			
	1. Determination of metal to ligand ratio of			

	complexes by Job's method using UV-				
pH and	visible Spectrophotometer.				
Colorimetry	2. Identification of Organic compounds using				
-	FT-IR spectrometer.				
	3. Determination of the concentration of a				
	redox active material via Cyclic				
	voltammetry and differential pulse				
	voltammetry.				
Demonstrati					
on					
Text Books	· · ·				
1. B. Viswana	athan and P.S. Raghavan, Practical Physical Chemistr	ry, Viva Bo	oks, New	v Delhi, 2009).
2. Sundaram,	Krishnan, Raghavan, Practical Chemistry (Part II), S	. Viswanat	han Co. F	vt., 1996.	

3. Renu Gupta, Practical Physical Chemistry, New Age International (P) Ltd., New Delhi, 2018.

Suggested Readings

- 1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House, 2001.
- 2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical Chemistry, 8th edition, McGraw Hill, 2009.
- 3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. Chand and Co., 1987.
- 4. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry, New Age International (P) Ltd., New Delhi, 2008.
- 5. Shailendra K. Sinha, Physical Chemistry-A laboratory manual, Narosa Publishing House Pvt. Ltd., 2014.

Web Resources

- 1. https://bit.ly/3y8FpAU
- 2. https://bit.ly/3xIMKpl
- 3. https://bit.ly/3xOxaJ4

COs	CO Description	Cognitive Level
CO 1	To recall the principles and concepts such as the dissociation of electrolytes, conductance, solubility product, etc.	K1, K2
CO 2	To scientifically perform the procedure of experiments relating to the determination of pH, pKa, strength of acids, relative strength of acids, amount of halides and salts.	

CO 3	To observe and record systematically the readings in all the experiments.	K4
CO 4	To calculate and process the experimentally measured values and compare with graphical data.	K5
CO 5	To interpret the experimental data scientifically to improve the analytical skill for a position in an industry/research laboratory.	K6

Course Code	PCH4PJ01	
Course Title	PROJECT	
Credits	5	
Hours/Week	15	
Category	Project (PJ)	
Semester	IV	
Regulation	2022	
Course Overvi	ew	
 This course provides an opportunity to students to carry out literature search thoroughly on a specific topic following the principles of scientific research methodology. This course helps the students to write a project proposal relevant to the topic based on the literature review. A systematic and scientific approach to synthesize compounds/complexes and to characterize 		
 A systematic and scientific approach to synthesize compounds/complexes and to characterize them using sophisticated analytical techniques can be learnt in this course. Analytical skills required to perform experiments, interpret the data and to present the report with a meaningful summary and conclusion can also be acquired in this course. This course trains the students to harness soft skill for presenting their research findings in front of a panel of subject experts. 		

- 1. To review literature on a specified topic using scientific research methodology.
- 2. To write the project proposal scientifically with the mention of its industrial and commercial relevance also.
- 3. To carry out the synthesis of compounds/complexes and characterize them using various analytical instruments for its applications.
- 4. To learn the scientific methodology to collect and interpret the experimental data for the presentation of the report.
- 5. To handle sponsored research projects of social and environmental importance.

Prerequisites	Advanced knowledge in Chemistry
---------------	---------------------------------

	SYLLABUS			
EXPT	CONTENT	HOU	COs	COGNITIVE
		RS		LEVEL
1	Performing experiments related to industrially	225	CO1	K1, K2, K3,
	and socially relevant projects.		CO2	K4, K5, K6
			CO3	

	CO4	
	CO5	

Testing

- 1. The student will be tested both in subject matter of the report and the mode of presentation in a review meeting to be held in the middle of the semester, with a panel of HOD, Supervisor and two staff of the department. This progress reporting will carry 25% marks.
- Upon submission of the project to the office of the controller of examinations at the end of the semester, the viva-voce examination will be conducted by the supervisor and the external expert suggested by the supervisor. The project report and the viva-voce will be evaluated for 75% marks.

Project Report

50 Marks

Standard of the subject and plan Preparation and mastery Originality and logical development Summary, conclusions and references

Viva-voce

25 marks

Use of power point, teaching aids, blackboard etc. Language, Communication and diction Economy of time Answer to questions

COs	CO Descriptions	Cognitive Level
CO 1	To recall and comprehend the concepts of scientific research methodology for literature survey.	K1, K2
CO 2	To characterize the synthesized compounds/complexes and to interpret the experimental data systematically.	К3
CO 3	To explain and infer the chemical, biological, medicinal, industrial and commercial applications of the product obtained.	K4
CO 4	To report and summarize the findings of their project with respect to its social and environmental importance.	K4, K5
CO 5	To invent and adopt novel methodologies to solve interdisciplinary projects scientifically at national and international levels.	К6

Course Code	PCH2ME01			
Course Title	BIOMOLECULES AND NATURAL PRODUCTS			
Credits	2			
Hours/Week	4			
Category	Major Elective (ME) - Theory			
Semester	Π			
Regulation	2022			
 Course overview The aim of the course is to explain the importance of biomolecules and the chemistry of natural products. This course deals with selected biomolecules which play vital roles in primary and secondary metabolism. Natural products with strong pharmacological activity and physiological effects are discussed in detail. The study of biomolecules and natural products describe the involvement in various biological processes. This course also focusses on the extraction and isolation of biomolecules and natural products. 				
Course Objectives1. To learn the basic concepts and biological importance of biomolecules and natural products.2. To explain various functions of carbohydrates, proteins, nucleic acids, steroids and hormones.3. To understand the functions of alkaloids and terpenoids.4. To elucidate the structure determination of biomolecules and natural products.5. To extract and construct the structure of new alkaloids and terpenoids from different methods.PrerequisitesBasic knowledge of organic chemistry.				

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Chemistry and metabolism of carbohydrates	12	CO 1	K1, K2, K3, K4,
	1.1 Definition, classification and biological role of		CO 2	K5, K6
	carbohydrates. Monosaccharides: Linear and ring		CO 3	
	structures (Haworth formula) of ribose, glucose,		CO 4	
	fructose and mannose (structure determination		CO 5	
	not required), physical and chemical properties of			
	glucose and fructose.			
	1.2 Disaccharides: Ring structures (Haworth formula)			
	 –occurrence, physical and chemical properties of maltose, lactose and sucrose. 			
	1.3 Polysaccharides: Starch, glycogen and cellulose –			
	structure and properties, glycolysis of			
	carbohydrates.			
II	Steroids and Hormones	12	CO 1	K1, K2, K3, K4,
	2.1 Steroids-Introduction, occurrence, nomenclature,		CO 2	K5, K6
	configuration of substituents.		CO 3	
	2.2 Diels' hydrocarbon, stereochemistry,		CO 4	
	classification, Diels' hydrocarbon, biological		CO 5	
	importance, colour reactions of sterols, cholesterol-occurrence, tests, physiological			
	cholesterol-occurrence, tests, physiological activity, biosynthesis of cholesterol from squalene.			
	2.3 Hormones-Introduction, classification, functions			
	of sex hormones- androgens and estrogens,			
	adrenocortical hormones-cortisone and cortisol			
	structure and functions of non-steroidal			
	hormones-adrenaline and thyroxin.			
III	Proteins and nucleic acids	12	CO 1	K1, K2, K3, K4,
	3.1 Separation and purification of proteins – dialysis,		CO 2	K5, K6
	gel filtration and electrophoresis. Catabolism of		CO 3	
	amino acids - transamination, oxidative		CO 4	
	deamination and decarboxylation. Biosynthesis of		CO 5	
	proteins: Role of nucleic acids. Amino acid metabolism and urea cycle.			
	3.2 Structure, methods for the synthesis of			
	nucleosides - direct combination, formation of			
	nucleosities - uncer combination, formation of			

	heterocyclic base and nucleoside modification,			
	conversion of nucleoside to nucleotides.			
	3.3 Primary and secondary structure of RNA and			
	DNA, Watson-Crick model, solid phase synthesis			
	of oligonucleotides.			
IV	Alkaloids	12	CO 1	K1, K2, K3, K4,
	4.1 Introduction, classification and isolation,		CO 2	K5, K6
	biological functions, characteristic tests.		CO 3	
	4.2 General methods of structural elucidation of		CO 4	
	alkaloids.		CO 5	
	4.3 Chemical methods of structure determination of			
	Atropine, Quinine, Belladine, Cocaine,			
	Heptaphylline, Papaverine, Morphine			
	(Synthesis and biological functions).			
		10		
V	Terpenoids and carotenoids	12	CO 1	K1, K2, K3, K4,
	5.1 Introduction, special isoprene rule, classification,		CO 2	K5, K6
	isolation and characteristics.		CO 3 CO 4	
	5.2 General methods of structural elucidation of		CO 4 CO 5	
	terpenoid and carotenoids. 5.3 Chemical methods of structure determination of		05	
	Abietic acid, Camphor, Cadinene, β -Carotene, Squalene, Vitamin A, Zingiberine.			
	Squalene, vitanni A, Zingibernie.			
Text Bo	oks			
1. T.	K Lindhorst, Essentials of Carbohydrate Chemistry ar nerica,2007.	nd Biochemi	stry, Wil	ey VCH,North
	K. Chatwal, Organic Chemistry on Natural Products, ⁷	Vol 1 Him	alava Dub	lishing House
	umbai, 2009.	v 01. 1, 11111	ulaya FUL	manning mouse,
		Vol. 2. Him	alava Pub	lishing House
	G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2, Himalaya Publishing House, Mumbai, 2009.			
	O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 1, Goel Publishing House, Meerut, 1997.			
5. O.	O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 2, Goel Publishing House, Meerut, 1997.			
6. I.	I. L. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson Education Asia, 1975.			
	V. K. Ahluwalia and M. Goyal, Textbook of Organic Chemistry, Narosa Publishing, New Delhi, 2000.			
	M. K. Jain and S. C. Sharma, Modern Organic Chemistr	ry, Vishal Pu	ublishing	Co., Jalandhar,

Delhi, 2014.

Suggested Readings

- 1. I. L. Finar, Organic Chemistry Vol-1, 6thedition, Pearson Education Asia, 2004.
- 2. Pelletier, Chemistry of Alkaloids, Van Nostrand Reinhold Co, 2000.
- 3. Shoppe, Chemistry of the steroids, Butterworthes, 1994.
- 4. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal & aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad, 2004.
- 5. M. P. Singh and H. Panda, Medicinal Herbs with their formulations, Daya Publishing House, Delhi, 2005.
- 6. V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New Delhi, 2009.

- 1. https://bit.ly/39LXStz
- 2. https://www.organic-chemistry.org/
- 3. <u>https://www.studyorgo.com/summary.php</u>
- 4. <u>https://www.clutchprep.com/organic-chemistry</u>

COs	CO Description	Cognitive
		Level
CO 1	To understand the basic concepts of biomolecules and natural products.	K1, K2
CO 2	To integrate and assess the different methods of preparation of structurally	K3
	different biomolecules and natural products.	
CO 3	To illustrate the applications of biomolecules and their functions in the	K4
	metabolism of living organisms.	
CO 4	To analyse and rationalise the structure determination of alkaloids, terpenoids and	K5
	carotenoids.	
CO 5	To develop the structure of biologically important natural products by different	K6
	methods	

Course Code	PCH2ME02
Course Title	SURFACE CHEMISTRY AND CATALYSIS
Credits	2
Hours/Week	4
Category	Major Elective (ME) – Theory
Semester	Π
Regulation	2022
 phenomen This cours and micell It provide understand particles. One of the and biocat 	riew hemistry describes the basic properties of solid surface which includes interfacial ha. It deals with particle dispersions, surfactant, emulsions and micelle formation. se explores the mechanism and the applications of homogeneous, heterogeneous lar catalysis. es fundamental characteristics of various colloidal systems with an in-depth ding of the physicochemical mechanisms that govern nanoscopic and microscopic e modules in this course focuses on the concepts of photo catalysis, electrocatalysis talysis with industrial applications. ts the types, preparation and different surface characterization techniques of
 To unders solid surfa To learn the bio-cataly To describe 	p an understanding of the concept of homogeneous catalysis and its significance. stand and use adsorption isotherms for mono and multilayer adsorption on porous aces. he formation and characterization of surfactants, micelles and emulsion. n the mechanism and industrial applications of photocatalysis, electrocatalysis and
Prerequisites	Basic knowledge of chemical kinetics.

IHomogeneous catalysis13CO 1K1, K2, K1.1Catalysis - Catalytic activity, promoters, inhibitors, stabilisers, catalyst supports, selectivity, kinetic and thermodynamic interpretations. Catalyst deactivation - poisoning, fouling and thermal degradation. Green catalysis, nano catalysis, phase transfer catalysis and shape selective catalysis.CO 41.2Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acid- base catalysis law - catalytic powerCo 4	3,
 1.1 Catalysis - Catalytic activity, promoters, inhibitors, stabilisers, catalyst supports, selectivity, kinetic and thermodynamic interpretations. Catalyst deactivation - poisoning, fouling and thermal degradation. Green catalysis, nano catalysis, phase transfer catalysis and shape selective catalysis. 1.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acid- base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power 	ŕ
 inhibitors, stabilisers, catalyst supports, selectivity, kinetic and thermodynamic interpretations. Catalyst deactivation - poisoning, fouling and thermal degradation. Green catalysis, nano catalysis, phase transfer catalysis and shape selective catalysis. 1.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acidbase catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power 	6
 selectivity, kinetic and thermodynamic interpretations. Catalyst deactivation - poisoning, fouling and thermal degradation. Green catalysis, nano catalysis, phase transfer catalysis and shape selective catalysis. 1.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acidbase catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power 	
interpretations. Catalyst deactivation - poisoning, fouling and thermal degradation. Green catalysis, nano catalysis, phase transfer catalysis and shape selective catalysis.CO 51.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acid- base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic powerCO 5	
 poisoning, fouling and thermal degradation. Green catalysis, nano catalysis, phase transfer catalysis and shape selective catalysis. 1.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acidbase catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power 	
degradation. Green catalysis, nano catalysis, phase transfer catalysis and shape selective catalysis. 1.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acid- base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power	
 catalysis, phase transfer catalysis and shape selective catalysis. 1.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acid- base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power 	
 shape selective catalysis. 1.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acid-base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power 	
 1.2 Homogeneous catalysis - general mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acid-base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power 	
mechanism, Arrhenius and van't Hoff intermediates, activation energy. Acid- base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power	
intermediates, activation energy. Acid- base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power	
base catalysis - mechanism. Acidity function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power	
function - rates of acid catalyzed reactions. Bronsted catalysis law - catalytic power	
Bronsted catalysis law - catalytic power	
and a different set of	
and acidity-base strength.	
1.3 Polymerization of olefins, oxidative	
dehydrogenation - ethyl benzene to	
styrene.	
IIHeterogeneous catalysis13CO 1K1, K2, K	3,
2.1 Heterogeneous catalysis - general CO 2 K4, K5, K	6
mechanism, preparation of catalysts - CO 3	
precipitation and impregnation methods. CO 4	
2.2 Adsorption- types, factors affecting CO 5	
adsorption, adsorption isotherms.	
Unimolecular adsorption - Freundlich,	
Langmuir - simple, dissociation,	
competitive and non-ideal adsorption.	
Adsorption coefficient. Multimolecular	
adsorption – Brunauer, Emmett and Teller,	
Harkins-Jura equations. Adsorption from	
solution - Gibbs adsorption isotherm,	
surface films.	
2.3 Adsorption on porous solid - pore	
distribution and rate of the reaction, pore	
size and specificity of catalyst. Geometric	

	requirements of catalysis. Heterogeneous catalysts for catalytic cracking and Fischer-Tropsch synthesis. Electrochemical hydrogen production by electrolysis.			
III	 Colloids 3.1 Surfactants - classification, anionic, cationic and amphoteric, hydrophile-lipophile balance. 3.2 Micelles - (Micellization) formation, shape, and structure of micelles, Micellar aggregation number, critical micellar concentration (CMC), factors affecting CMC, thermodynamics of micellization - entropy change and hydrophobic effect. Micellar catalysis - electrolyte inhibition, reverse micelles and its uses. Synthesis of mesoporous materials-Liquid crystal template (LCT) mechanism 3.3 Emulsions - macro and micro emulsion, formation, phase diagram and applications. Theories of emulsion, selection of surfactants as emulsifiers, preparation, elastic and non-elastic gels. 	11	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
IV	 Photo and Biocatalysis 4.1 Photocatalysis – Types-Homo and hetero semiconductors - TiO₂ and ZnO. Applications - degradation of dyes, solar energy conversion, electrochemical cells, photoelectrolysis of water, organic reactions - oxidation, reduction, polymerization, substitution and isomerization reaction using TiO₂. 4.2 Electrocatalysis: Mechanism of hydrogen and oxygen electrode reactions 4.3 Biocatalysis – enzyme classification, characteristics, factors affecting enzyme catalysis, enzyme inhibition - irreversible 	12	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	and reversible. Kinetics of enzyme inhibition - competitive, uncompetitive, non-competitive and degree of inhibition.			
V	 Surface Characterization Techniques 5.1 Brunauer-Emmett-Teller (BET) surface area analysis, Barrett-Joyner-Halenda (BJH) pore size, volume analysis and de Boer t-plot method. 5.2 Thermal methods – temperature programmed desorption and reduction. 5.3 Spectroscopic techniques - Auger electron spectroscopy, Ion scattering spectroscopy, X-ray photoelectron spectroscopy. 	11	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
Appli 2. B. V techn 3. D. K. (P) L	Noks Viswanathan, S. Sivasanker and A.V. Ramas ications, Narosa Publishing House, New Delhi, 201 Viswanathan, S. Kannan and R.C Deka, Cataly iques, Narosa Publishing House, New Delhi, 2004. Chakrabarthy and B. Viswanathan, Heterogeneou imited, Publishers, New Delhi, 2011. Curiacose, Catalysis, Macmillan India Limited, New	0. ysts and su us catalysis,	nrfaces of New Ag	characterization
 J. Ra Macm G.C. Ely H V. M Publi D. K Limit B Im 	ed Readings ajaram and J.C. Kuriacose, Kinetics and Mechan nillan India Limited, New Delhi, 2011. Bond, Heterogeneous catalysis: Principles and app House, London W.I, 1974. Jurugesan, A. Banumathi and M. Palanichamy, R shing House, New Delhi, 1999. C. Chakrabarthy, Adsorption and catalysis by se ted, Publishers, New Delhi, 2008. elik and Jacques C Védrine, Catalyst characteriza rials, Plenum Press, New York, 1994.	plications, C Recent Tren olids, New	Dxford U ds in Ca Age In	niversity Press, talysis, Narosa ternational (P)

Web Resources

- 1. https://bit.ly/3HDzsPz
- 2. https://go.nasa.gov/3y9WBWU
- 3. <u>https://bit.ly/3bgprLW</u>
- 4. https://bit.ly/3n5y9zj
- 5. https://nptel.ac.in/courses/113/104/113104004/
- 6. https://bit.ly/3Oc1Dr9

COs	CO Description	
		Level
CO 1	To understand and recall definitions, basics of surface, interfacial	K1, K2
	phenomena, catalysis, colloids and surface characterization.	
CO 2	To differentiate homogeneous and heterogeneous catalysis, photo and bio catalysis, express the properties of colloids and classify surface analytical	К3
	tools.	
CO 3	To illustrate the mechanism involved in various catalysis and principles of conventional and spectroscopic surface characterization techniques.	K4
CO 4	To outline the importance of the characteristics of surface, interfacial phenomena, colloids and limitations of surface analytical techniques.	K5
CO 5	To develop analytical skills in interpreting the results of surface analytical tools and to choose the appropriate among homogeneous, heterogeneous, photo and bio catalyst for industrial applications and research.	K6

Course Code	PCH3ME01
Course Title	APPLIED ORGANIC CHEMISTRY
Credits	2
Hours/Week	4
Category	Major Elective (ME) - Theory
Semester	III
Regulation	2022

Course Overview

- 1. The aim of the course is to impart knowledge about the techniques adopted various chemical industries.
- 2. The course gives a detailed account on industrial methods of chemical processes and their applications.
- 3. The consequences of chemical accidents and the need for green synthesis are discussed in detail.
- 4. The emerging methods of synthesis of various organic compounds are also discussed.
- 5. This course highlights the advantages and drawbacks of renewable and non-renewable energy sources towards the organic synthesis.

- 1. To learn the techniques of chemical processes of various industries.
- 2. To understand the concepts of organic chemical technology and green synthesis.
- 3. To understand the types and functions of various catalysts used in green synthesis.
- 4. To correlate the advantages of microwave and ultrasonic assisted synthesis with conventional methods.
- 5. To design new routes to synthesize drugs.

Prerequisites	Basic knowledge of organic chemistry.
---------------	---------------------------------------

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Organic Chemical Technology	12	CO 1	K1, K2, K3, K4,
	1.1 Unit operations in chemical engineering - Fluid		CO 2	K5, K6
	flow, Reynold's number, Bernoulli's equation,		CO 3	
	turbulent flow, mass transfer. Distillation - two		CO 4	
	and three component systems, leaching and		CO 5	
	extraction, stirrers and driers.			
	1.2 Factors affecting chemical process kinetics, scaling			
	up of reactions from laboratory to pilot plant to			
	main plant; Materials of construction.			
	1.3 Study of industrial scale nitration, sulphonation			
	and halogenation reactions, quality control, R & D and standardization.			
	and standardization.			
II	Organometallic Compounds	12	CO 1	K1, K2, K3, K4,
	2.1 Synthesis and reactions involving organolithium		CO 2	K5, K6
	(n-BuLi, PhLi), organocadmium,		CO 3	
	organomagnesium, organopalladium,		CO 4	
	organoselenium, organocobalt, organoaluminium,		CO 5	
	organosilicon- <i>tert</i> -butyldimethylsilyl chloride,			
	and organocopper.			
	2.2 Organo rhodium and ruthenium compounds:			
	Pauson-Kand reaction, olefin metathesis, Grubb's catalyst.			
	2.3 Reactions promoted by samarium diiodide and			
	dicyclopentadienyl samarium - Barbier type			
	reaction, ketyl-alkene coupling reactions,			
	pinacolic coupling reactions, acyl anion reactions			
	and McMurray olefination.			
III	Polymer supported Reagents in Organic Synthesis	12	CO 1	K1, K2, K3, K4,
	3.1 Introduction, choice of polymers, properties,	_	CO 2	K5, K6
	advantages of polymer support and reagents.		CO 3	
	3.2 Intramolecular cyclization reactions, bromination		CO 4	
	by using poly-N-bromosuccinimide, use of		CO 5	
	polystyrene carbodiimide.			
	3.3 Acylation with polystyrene anhydride, diazo			
	transfer reaction, Wittig reactions, alkylation,			

	oxidation with peracid and chromic acid. Use of			
	polymer supported photosensitizers.			
IV	Green Chemistry and Phase Transfer Catalysts	12	CO 1	K1, K2, K3, K4
	4.1 Chemical accidents, terminologies and twelve		CO 2	K5, K6
	principles. Designing green synthesis-green		CO 3	
	reagents: dimethyl carbonate. Green solvents:		CO 4	
	Water, Ionic liquids-criteria, general methods of		CO 5	
	preparation, effect on organic reaction.			
	4.2 Supercritical carbon dioxide- properties,			
	advantages, drawbacks and a few examples of			
	organic reactions in scCO ₂ . Green synthesis-adipic			
	acid and catechol.			
	4.3 Phase transfer catalysts - types, mechanism,			
	advantages, preparation of quaternary ammonium			
	salts. Synthetic applications - substitution,			
	esterification, addition, condensation and			
	polymerization reactions.			
V	Microwave Synthesis and Sonochemistry	12	CO 1	K1, K2, K3, K4
	5.1 Microwave assisted synthesis - Principle, types,		CO 2	K5, K6
	limitations and precautions.		CO 3	
	5.2 Applications - Esterification, deprotection of esters		CO 4	
	and ethers, C- and N-alkylation and condensation		CO 5	
	of active methylene compounds, rearrangements,			
	synthesis of enamino-ketones and electrophilic			
	alkenes.			
	alkenes. 5.3 Sonochemistry - Principle, types and precautions.			
	5.3 Sonochemistry - Principle, types and precautions.			
	5.3 Sonochemistry - Principle, types and precautions.Applications - Esterification, hydrolysis,			
	 5.3 Sonochemistry - Principle, types and precautions. Applications - Esterification, hydrolysis, substitution, addition, oxidation, reduction and 			

McGraw-Hill, NewDelhi,2005.

^{2.} J. M. Swan and D. St. C. Black, Organometallics in Organic Synthesis, Chapman Hall, 1974.

^{3.} V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special Techniques, Narosa Publishing House, New Delhi,2001.

^{4.} K. Tanaka, Solvent Free Organic Synthesis, Wiley VCH, Weinheim, 2003.

^{5.} Asim K. Das, Environmental Chemistry with Green Chemistry, Books and Allied (P) Ltd, 2010.

- 6. A. K. De, Environmental Chemistry, New Age Publications, 2017.
- 7. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry, Books and Allied (P) Ltd, 2019.
- Francis.A. Carey and Robert. M. Giuliano, Organic Chemistry, 8thedition, McGraw Hill education, 2012.
- 9. Robert Whyman, Applied Organometallic Chemistry and Catalysis, Oxford Chemistry Primers, Indian edition, 2005.
- 10. Manfred Bochmann, Organometaalics-1 Complexes with Transition Metal-Carbon σ -bonds, Oxford Chemistry Primers, Indian edition, 2005.
- 11. B. D. Gupta and A. J. Elias, Basic organometallic chemistry, 2ndedition, universities press, 2013.
- 12. Robert H. Crabtree, Organometallic Chemistry, Wiley, 6thedition, 2014.

Suggested Readings

- 1. P. H. Groggins, Unit Processes in Organic Synthesis, 5thedition, Tata McGraw Hill, New York, 1995.
- 2. C. E. Dridens, Outlines of Chemical Technology, Affiliated East-West Press Pvt. Ltd, 2001.
- 3. C. A. Clausen and G. Matson, Principles of Industrial Chemistry, John Willey & Sons, New York, 1978.
- 4. M. Larhed, and K. Olofsson, Topics in current chemistry, Springer, 266, 2006
- 5. R. Sanghi and M. M. Srivastava, Green chemistry, Environment Friendly Alternatives, Narosa Publishing House, 2007.
- 6. V. K. Ahluwalia, Green Chemistry, Ane Books Pvt. Ltd., 2006.
- 7. B. Michael Smith, Organic synthesis, McGraw Hill International Edition, 1994.
- 8. Methods and Reagents in Green Chemistry, Edited by P. Tundo, A. Perosa and F. Zacchini, Wiley-Interscience, 2007.

Web Resources

- 1. https://bit.ly/3zOzJ0c
- 2. https://www.organic-chemistry.org/
- 3. https://www.studyorgo.com/summary.php
- 4. <u>https://www.clutchprep.com/organic-chemistry</u>

COs	CO Description	Cognitive
		Level
CO 1	To recall the basic chemical techniques used in conventional industrial	K1, K2
	preparations and in green innovations.	
CO 2	To understand the various techniques used in chemical industries and in	К3
	laboratory.	

CO 3	To compare the advantages of organic reactions assisted by renewable energy	K4
	sources and non-renewable energy sources.	
CO 4	To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted	K5
	organic synthesis.	
CO 5	To design and synthesize new organic compounds by green methods.	K6

Course Code	PCH3ME02
Course Title	ORGANOMETALLIC CHEMISTRY
Credits	2
Hours/Week	4
Category	Major Elective (ME) - Theory
Semester	III
Regulation	2022

Course Overview

1. This course comprises of the basic concepts of organometallic, supramolecular and bioorganometallic chemistry.

- 2. The aim of the course is to apply the basic concepts to understand the reactive mechanism of organometallic compounds as catalysts.
- 3. This course also explains the nature of bonds, types and various theories of organometallic compounds.
- 4. In this course, different types of reactions in metal carbonyls, cluster and polymers are also explained.
- 5. The other important aspects of this paper are to understand the chemistry of organometallic compounds and supramolecules in the biosystems.

Course Objectives

- 1. To recall the basic concepts of organometallic, supramolecular and bio-organometallic chemistry.
- 2. To predict the properties and applications of various organometallic compounds.
- 3. To construct MO diagram to predict the structure of metal carbonyls using 18- electron rule.
- 4. To apply the knowledge of reaction and bonding of supramolecules.
- 5. To formulate methods of reactions involved in the bio-organometallic chemistry.

Prerequisites Basic knowledge of coordination chemistry.	
--	--

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Organometallic compounds	16	CO 1	K1, K2, K3,
	1.1 Introduction: Classification, hapticity.		CO 2	K4, K5, K6
	Nomenclature, 14-, 16- and 18-electron rule-		CO 3	
	counting electrons in ligands. Preparation,		CO 4	
	structure and properties of organometallics of		CO 5	
	alkali (Li) and alkaline earth metals (Grignard			
	reagents), group 13-15 elements and comparison			
	with Group-12 elements.			
	1.2 Donded organometallics of transition			
	elements: Synthesis, carbanion exchange,			
	transmetalation, elimination, cyclo-metalation and			
	metal atom reactions. M-C bond cleavage (Ti and			
	Zr complexes), alkene elimination and proton			
	abstraction, adduct formation and insertion			
	reactions.			
	1.3 π bonded organometallics of transition elements:			
	Classification of ligands, synthesis, reactions,			
	structure and bonding-metal carbene, carbyne			
	complexes, Fischer and Schrock carbine			
	complexes and Zeise's salt.			
	1.4 Enyl complexes: Classification, $Allyl(\eta^3)$			
	complexes-synthesis, reactions, structure and			
	bonding-stereoisomerism, fluxional behaviour.			
	Cyclopentadienyl (η^5) complexes: Metallocene-			
	synthesis, properties, structure, bonding (MOT) in			
	ferrocene, nickelocene, cobaltocene, uranocene			
	and vanadocene. Reactions of ferrocene.			
II	Reactions and Catalysis	16	CO 1	K1, K2, K3,
	2.1 Reactions: Nucleophilic substitution– dissociative		CO 2	K4, K5, K6
	and associative mechanisms, photochemical		CO 3	
	reactions of metal carbonyls, insertion and		CO 4	
	deinsertion, carbonylation and decarbonylation		CO 5	
	reactions. Mechanism and stereochemistry of			
	oxidative addition, reductive elimination,			
	transmetalation, carbometalation, migratory			
	insertion, β -hydride elimination.			

	 2.2 Organometallics as catalyst: Hydrogenation of alkene-Wilkinson's catalyst, oxo process, Wacker process, monsanto acetic acid synthesis, Ziegler-Natta catalyst-polymerization of olefin. 2.3 Preparation of synthesis and water gas shift reactions, synthetic gasoline-ZSM-5 catalyst and Fischer–Tropsch process. Palladium metal based coupling reactions: Heck reaction, Suzuki coupling, Sonogashira coupling, Stille coupling, Negishi coupling reactions. 			
III	 Metal Carbonyls, Clusters and Polymers 3.1 Metal carbonyls: Introduction, metal-metal bonding, preparation, structure and bonding (<i>MOT</i>) of CO, evidence of π-back bonding, spectral distinction of bridging and terminal. Nucleophilic and electrophilic additions, Collman's reagent and migratory insertion. 3.2 Transition metal clusters: Introduction, classification, structural characteristics, cluster geometries, tri-, tetra-, penta-, hexanuclear. Bonding: polyhedral skeletal electron pair theory, isolobal relationships, reactivity and catalysis. 3.3 Mixed clusters: Structure and bonding in hydride and carbide clusters. Wade's rule, halide cluster, Chevrel phases, zintel ions, capping and Mingo's rule. 3.4 Organometallic polymers: Introduction, ferrocene based condensation polymers. 	16	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
IV	 Supramolecular chemistry 4.1 Host-guest chemistry: Classifications, thermodynamics and kinetic stability, lock and key model, macrocyclic systems-crown ethers. 4.2 Molecular recognition: Role of crown ether, rodents, cryptands, spherands, calixarenes and siderophores. 4.3 Dendrimers: Synthesis–divergent and convergent, dendrimeric photochemical device. Molecular wires, switches and rectifiers- 	6	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	Applications.			
V	•	6	CO 1	K1, K2, K3,
	5.1 Organometallic enzymes: coenzymes, vitamin		CO 2	K4, K5, K6
	B ₁₂ correnoid-reactions, mimic compounds of		CO 3	
	vitamin B_{12} .		CO 4	
	5.2 Heavy metal poisoning–mercury and arsenic.		CO 5	
	5.3 Organometallic drugs: anticancer (Ru) and			
	ferrocifen-mechanism, antimalarial drug-			
	ferroquine, radiopharmaceuticals, tracers,			
	ionophores and sensors.			
Tex	tbooks	-	•	
1.	R. Gopalan, V. Ramalingam, Concise Coordination Chemistre	ry, S. Chand	, 2001.	
2.	F. A. Cotton and G. W. Wilkinson, Advanced Inorganic C	<i>Chemistry</i> , 5t	h edn, Joh	n Wiley & Sons,
	1988.			
3.	K. F. Purcell and J. C. Kotz, Inorganic Chemistry; Saunders:	Philadelphia	a, 1976.	
4.	Ajai Kumar, Coordination Chemistry, 6th edn., Aaryush Educ			
5.	B. D Gupta and A.J Elias, Basic Organometallic Chemistry, 2	2 nd edn., Uni	iversities F	Press, 2013.
6.	Puri, Sharma and Kalia, Principles of Inorganic Chemistry, 3			hing Co., 2017.
7.	C. E. Housecraft and A. G. Sharpe, Inorganic Chemistry, 4th			
8.	R. H. Crabtree, Organometallic Chemistry of the Transition I	<i>Metals</i> , 2 nd e	dn., John V	Wiley, 1993.
9.	J. W. Steed and J. L. Atwood, Supramolecular chemistry, Wi	iley, New Yo	ork, 2000.	
10.	S. J. Lippard and J. M. Berg, Principle of Bioinorganic Chem	<i>istry</i> , Unive	rsity Scier	nce Books, 1994.
Sug	gested Readings			
1.	J. E. Huheey, E. A. Keiter and R. L. Keiter, <i>Inorganic Chem</i>	istry, Princip	ple, structi	ure and reactivity.
	4 th edn., Harper Collins, 1993.	<i>,</i> , , , , , , , , , , , , , , , , , , ,		
2.	D. F. Shriver and P. W. Atkins, <i>Inorganic Chemistry</i> , 3 rd edn.	, Oxford, 20	008.	
3.	B. E. Douglas, D. H. McDaniel and J. J. Alexander, Concep			rganic Chemistry,
	3 rd edn., John Wiley, 1993.		~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
4.	A. Yamamoto, Organotransition Metal Chemistry: Fundam	ental Conce	epts and A	Applications, John
	Wiley 1986.		-	
5.	T.P. Fehlner, J. Halet, J. Saillard, Molecular clusters: a bri	dge to solid	-state che	mistry Cambridge
	University Press, 2007.	-		- 0
6.	F. A. Cotton, C. A. Murillo and R. A. Walton (Eds.), Multiple	le Bonds bet	ween Meta	al Atoms, Springer
	Science and Business Media, Inc. 2005.			
7.	W.L. Jolly, Modern Inorganic Chemistry, 2 nd edn, McGraw-H	Hill, Inc., 199	91.	
8.	H. J. Schneider and A. Yatsimirsky, Principles and methods in Supramolecular chemistry, Wiley,			
<u> </u>		_		·

New York, 2000.

9. J. M. Lehn, Supramolecular chemistry: Concepts and Perspectives, VCH, Weinheim, 1995.

Web Resources

- 1. <u>https://bit.ly/30xwNt5</u>
- 2. <u>https://bit.ly/3n7weum</u>
- 3. <u>https://bit.ly/3bhcJwG</u>

	Course Outcomes (COs) and Cognitive Level Mapping			
COs	CO Description	Cognitive		
		Level		
CO 1	To recall the basic concepts of the organometallic, supramolecular and bio-	K1, K2		
	organometallic chemistry.			
CO 2	To predict the properties and applications of various organometallic compounds.	К3		
CO 3	To construct MO diagram to predict the structure of metal carbonyls using 18-	K4		
	electron rule.			
CO 4	To apply the knowledge of reaction and bonding of supramolecules.	К5		
CO 5	To formulate methods to synthesise novel organometallic compounds as industrial	K6		
	catalyst.			

Course Code	PCH3ID01
Course Title	MATERIALS SCIENCE
Credits	3
Hours/Week	6
Category	Interdisciplinary (ID) - Theory
Semester	III
Regulation	2022

Course Overview

1. Materials science is an interdisciplinary subject, covering the physics and chemistry of matter, engineering applications and industrial manufacturing processes.

- 2. Materials science enables to design and develop competitive products.
- 3. In this course, correlations between structure and properties of crystals are also established.
- 4. It also explains developments in the field of crystallography, special materials, nanotechnology and renewable energy conversion materials.
- 5. Structure-property relationships discussed in this course will give an exposure to develop new materials for energy conversion and devices.

Course Objectives

- 1. To understand the crystal structure, growth methods and X-ray scattering.
- 2. To explain the optical, dielectric and diffusion properties of crystals.
- 3. To recognize the basis of semiconductors, superconductivity materials and magnets.
- 4. To study the synthesis, classification and applications of nanomaterials.
- 5. To learn about the importance of materials used for renewable energy conversion.

Prerequisites	Basic knowledge of physics and chemistry of materials.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Crystallography	18	CO 1	K1, K2, K3,
	1.1 Crystallography: symmetry - unit cell and Miller		CO 2	K4, K5, K6
	indices -crystal systems - Bravais lattices - point		CO 3	
	groups and space groups - X-ray diffraction-Laue		CO 4	
	equations-Bragg's law-reciprocal lattice and its		CO 5	
	application to geometrical crystallography.			
	1.2 Crystal structure-powder and single crystal-			
	applications. Electron charge density maps,			
	neutron diffraction-method and applications.			
	1.3 Crystal growth methods - nucleation-equilibrium			
	stability and metastable state. Single crystal -Low			
	and high temperature, solution growth- Gel and			
	sol-gel. Melt growth - Bridgeman - Stockbarger,			
	Czochralski methods. Flux technique, physical			
	and chemical vapour transport. Lorentz and			
	polarization factor - primary and secondary			
	extinctions.			
	1.4 X-ray scattering: Atomic scattering factor -			
	diffraction by a space lattice structure factor			
	equation -electron density and Fourier series –			
	Fourier Transform and crystal diffraction -			
	diffraction by real crystals - Lorentz and			
	polarization factor - primary and secondary			
	extinctions.			
II	Properties of crystals	18	CO 1	K1, K2, K3,
	2.1 Optical studies - Electromagnetic spectrum		CO 2	K4, K5, K6
	(qualitative) refractive index – reflectance –		CO 3	
	transparency, translucency and opacity. Types of		CO 4	
	luminescence – photo-, electro-, and injection		CO 5	
	luminescence			
	2.2 LEDs – organic, Inorganic and polymer LED			
	materials - Applications.			
	2.3 Dielectric studies- Polarisation - electronic, ionic,			
	orientation, and space charge polarisation. Effect			
	of temperature. dielectric constant, dielectric loss.			
	Types of dielectric breakdown–intrinsic, thermal,			
	-JP-5 of difference of oundown intrinsic, the intri			

III	 discharge, electrochemical and defect breakdown. 2.4 Optical fibers-composition-types-manufacturing of the fibers. Phosphor, LASER, Nd laser, Garnet Lasers, Photonics-laser skin resurfacing-CO₂ laser - lasers in dermatology. Nanomaterials 3.1 Introduction-role of size, classification - 0D, 1D, 2D, 3D. Synthesis - Bottom–Up, Top–Down, consolidation of Nano powders. 3.2 Synthesis- Physical and chemical methods - inert gas condensation, arc discharge, laser ablation, sol-gel, solvo-thermal and hydrothermal - CVD- types, metallo organic, plasma enhanced, and low- pressure CVD. Microwave assisted and electrochemical synthesis. 3.3 Nanoparticles: gold and silver, metal oxides: silica, iron oxide and alumina – synthesis and properties. Core-shell nanoparticles-types, synthesis, and properties. Nanocomposites-metal-, ceramic- and polymer-matrix composites- applications. 3.4 Characterization – SEM, TEM and AFM- 	18	CO1 CO2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5,K6
IV	 3.4 Characterization – SEM, TEM and AFM-principle, instrumentation and applications. Special Materials 4.1 Semiconductor materials – classification-Ge, Si, GaAs, SiC, GaN, GaP, CdS,PbS. Identification of materials as p and n –type semiconductor-Hall effect - quantum and anomalous, Hall voltage - interpretation of charge carrier density. Applications of semiconductors: p-n junction as transistors and rectifiers, photovoltaic and photogalvanic cell. 4.2 Superconductivity: Meissner effect, Critical temperature and critical magnetic Field, Type I and II superconductors, BCS theory-Cooper pair, Applications. 4.3 Soft and hard magnets – Domain theory-Hysteresis Loop-Applications. Magneto resistance 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	 and gian magneto resistance. Ferro, ferri and antiferromagnetic materials-applications, magnetic parameters for recording applications. 4.4 Ferro-, Piezo-, and pyro electric materials – properties and applications. Shape memory Alloys-characteristics and applications, Non-linear optics-Second Harmonic Generators, mixing of Laser wavelengths by quartz, ruby and LiNbO₃. 			
V	 Materials for Renewable Energy Conversion 5.1 Solar Cells: Organic, bilayer, bulk heterojunction, polymer, perovskite based, hybrid solar cells. Efficiency and limiting factors. 5.2 Solar energy conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells, coordination compounds anchored onto semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. 5.3 Photochemical activation and splitting of water, CO₂ and N₂. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol. 	18	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
 Text Books S. Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers, 2016. Arumugam, Materials Science, Anuradha Publications, 2007. Giacavazzo et. al., Fundamentals of Crystallography, International Union of Crystallography. Oxfo Science Publications, 2010 Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science Engineers. 6th ed., PEARSON Press, 2007. P.K. Palanisamy, Materials Science, Scitech Publications, India, 2002. T. Balachandran, Materials Science, Charulatha Publications, India, 2003. Charles P. Poole, Jr., Frank J. Owens, Introduction to nanotechnology, Wiley-India, 2009. T. Pradeep, Nano: The Essentials, Tata McGraw-Hill Publishing Company Limited, 2007. T. Pradeep, A Text book of nanoscience and nanotechnology, Tata Mc-Graw H New Delhi, 2012. B.K. Hodge, Alternate Energy Systems and Applications, John Wiley & sons, Inc., 2010. N. Armaroli, V. Balzani and N. Serpone, Powering Planet Earth – Energy Solutions for the Futu Wiley, 2012. 			erials Science for , 2009. , 2007. Mc-Graw Hill, 2010.	

- 13. Alan J. Heeger, Niyazi Serdar Sariciftci and Ebinazar B. Namdas, Semiconducting and Metallic Polymers, Oxford Univ Press 2010.
- 14. Sukhatme S.P, Nayak J.K, "Solar Energy", Tata McGraw Hill Education Private Limited, New Delhi, 2010.
- 15. George W. Sutton: "Direct Energy Conversion", McGraw Hill, 1996.
- 16. Solar Photovoltaics: Fundamentals, Technologies and Applications, C. S. Solanki, Prentice Hall of India, 2011.

Suggested Readings

- 1. M.G. Arora, Solid State Chemistry, Anmol Publications, New Delhi, 2001.
- 2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and Company Ltd, 2001.
- 3. C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
- 4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private Limited, 1998.
- 5. A.R. West, Solid State Chemistry and Applications, John-Wiley and sons, 1987.
- 6. B. Viswanathan, Nanomaterials, Narosa Publishing House Pvt. Ltd., New Delhi, 2009.
- 7. Sulabha K. Kulkarni, Nanotechnology Principles and Practices, Capital Publishing Company, New Delhi, 2007.
- 8. S. Shanmugam, Nanotechnology, MJP Publishers, Chennai, 2010.
- 9. P. M. Sivakumar, V.I. Kodolov, G. E. Zakie, A. K. Haghi, Nanostructure, Nanosystems, and Nanostructured Materials: Theory-Production and Development, Technology 2013.
- 10. L. Liu and S. Bashir, Advanced Nanomaterials and their Applications in Renewable Energy, Elsevier Science, 2015.
- Elaine A. Moore, Lesley E. Smart, "Solid State Chemistry An Introduction", 5th Edition, ISBN 9780367135720, 2020 by CRC Press.

Web Resources

- 1. <u>http://xrayweb.chem.ou.edu/notes/symmetry.html</u>.
- 2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
- 3. <u>https://bit.ly/3QyVg2R</u>
- 4. <u>https://www.mdpi.com/journal/nanomaterials</u>.
- 5. https://www.vssut.ac.in/lecture_notes/lecture1428910296.pdf

COs	CO Description	
		Level
CO 1	To understand and recall the synthesis and characteristics of crystal structures,	K1, K2
	semiconductors, magnets, nanomaterials and renewable energy materials.	
CO 2	To integrate and assess the structure of different materials and their properties.	К3
CO 3	To analyse and identify new materials for energy applications.	K4
CO 4	To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LEDs uses, structures and synthesis.	К5
CO 5	To design and develop new materials with improved property for energy applications.	K6

Course Code	PCH2CD01
Course Title	CHEMISTRY OF CONSUMER PRODUCTS
Credits	1
Hours/Week	3
Category	Cross Disciplinary (CD) - Theory
Semester	Ш
Regulation	2022
COURSE OVERVI	EW
1. This course	intends to provide fundamental aspects of chemistry of consumer
products.	
2. It also highlig	the applications of consumer products.
3. This paper ex	splores the various analytical techniques used to study the standard of
consumer pro	ducts.
4. The course co	overs the hygiene and usage of food additives.
5. The course a	also describes the various components of manufacture of consumer
products.	
COURSE OBJECT	IVES
1. To understand	d the scientific bases for common consumer products.
2. To study the f	functions and applications of consumer products.
3. To estimate the	ne standard of various consumer products.
4. To justify the usage of additives in modern food components.	
5. To compile th	ne various components in the manufacture of soaps, detergents, perfumes
and cosmetics	8.
PREREQUISITES	Basic knowledge of science.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	 SOAPS 1.1 Definition, Saponification of oils and fats, Mechanism of action of soap. 1.2 Manufacture of soaps, formulation of toilet soaps. Different ingredients used and their functions. 1.3 Types: Medicated, herbal, hard, soft, shaving soaps and creams - examples. ISI specifications, testing procedures and limits. 	9	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
Π	 DETERGENTS 2.1 Mechanism of action and types. 2.2 Anionic detergents: Manufacture of LAB (linear alkyl benzene), sulphonation of LAB – preparation of acid slurry, different ingredients in the formulation of detergent powders and soaps, liquid detergents, foam boosters. 2.3 Cationic and non–ionic detergents: examples. Manufacture and applications - ethylene oxide condensate. 2.4 Comparison of soaps and detergents, biodegradation–environmental effects, BIS specifications / limits. 	9	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
III	 PERFUMES 3.1 Introduction, components of a perfume: vehicle, perfumery substances, fixatives. 3.2 Groups of odorous substances: essential oils, isolates, synthetics and semi-synthetics - alcohols, esters, ketones. Methods of extraction from essential oils: expression method, steam distillation, using volatile solvents, adsorption on purified fats and prickling 	9	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

IV	 process. 3.3 Types of fixatives: animal, resinous, essential oil and synthetic. SKIN PREPARATIONS 4.1 Face and skin powders – Ingredients and functions, types, snow and face creams. 4.2 Antiperspirants, sun-screen – preparations. UV absorbers, skin bleaching agents, depilatories, turmeric and neem powder preparation, vitamin oil. 4.3 Nail polishes - preparation, nail polish removers, article removers, lipsticks, roughages, eyebrow pencils - ingredients and functions, hazards, ISI specifications. 	9	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
V	 FOOD ADULTERATION AND HYGIENE 5.1 Adulterants: Common adulterants in different foods–milk and milk products, vegetable oils and fats, spices and condiments, cereal, pulses, sweetening agents and beverages, contamination with toxic chemicals–pesticides and insecticides, principles involved in the analysis of detection and prevention of food adulteration. 5.2 Methods of food preservation and processing, food deterioration. 5.3 Quality Control: Specifications and standards: FSSAI, Portable Format for Analytics (PFA), Fruit Product Order (FPO), Food and Drug Administration (FDA), drug license, World Health Organisation (WHO) standards, Indian Standards Institution (ISI) specifications, packing and label requirements, essential commodities act, consumer protection 	9	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	act, Agricultural Marketing (AGMARK).				
	act, Agricultural Marketing (AGMARK).				
T4 T					
Text Books					
1.	S. Gobala Rao, 1998, Outlines of chemical technology, 2 nd Edition, Affiliated East West				
2	press.				
	W. Sawyer, 2000, Experimental cosmetics, 1 st Edition, Dover publishers, New York				
	P. Romanowski and R. Schueller, 2009, Beginning Cosmetic Chemistry, 3 rd Edition, Allured Books Media, USA				
4.	M. Swaminathan, 1993, Advanced Text Book on Food and Nutrition, Vol. I & II, 2 nd Edition, Printing and Publishing Co., Ltd., Bangalore				
5.	N. Norman Potter, 1994, Food Science, 5 th Edition, CBS publishers and distributors, New Delhi.				
6.	L.H. Meyer, 1994, Food Chemistry, Latest Edition, CBS publishers and distributors, New Delhi.				
7.	H.K. Chopra and P.S. Panesar, 2010, Food Chemistry, Latest Edition, Narosa				
	Publishing House.				
8.	M. Vimaladevi, 2019, Text Book of Cosmetics, New Edition, CBS publishers and				
	distributors, New Delhi.				
Sugge	sted Readings				
1.	K. Bagavathi Sundari, 2006, Applied chemistry, 1st Edition, MJP Publishers.				
2.	V.K. Ahluwalia, 2010, Organic chemistry, Narosa Publications house.				
3.	Owen R Fennema, 1996, Food Chemistry, 1 st Edition, Marcel Decker Inc, NewYork.				
4.	B. Srilakshmi, 2003, Food Science, 3 rd Edition, New Age International Pvt. Ltd.				
5.	B. Siva Sankar, 2002, Food Processing and Preservation, 1 st Edition, Prentice–Hall of India Pvt .Ltd. New Delhi.				
6.	S. Ramakrishnan, K.G. Prasannam and R. Rajan, 2001, Text book of Medical biochemistry, 2 nd Edition, Orient Longman Ltd.				
7.	N. Shakuntala Manay and M. Shadaksharaswamy, 2002, FOODS: Facts and Principles, 2 nd Edition, New age International pvt. Ltd.				
8.	John Emsely, Chemistry at Home, 2015, Royal Society of Chemistry.				
9.					
2.	Technology, 2014, Fourth Edition: 4 th Edition, CRC Press.				
10	G. R. Chatwal, Synthetic organic chemistry, 3 rd edition, Himalaya Publishing House,				
	New Delhi, 2016.				
Web I	Resources				
1.	https://bit.ly/3ya27J6				
2.	https://bit.ly/3b42Vpx				

3. <u>https://bit.ly/3OLZyT1</u>

4. https://bit.ly/3bdd5UY

5. <u>https://bit.ly/3N8IkOc</u>

COs	CO DESCRIPTION	Cognitive Level
CO1	To understand the scientific bases of consumer products.	K1, K2
CO2	To apply the basic concepts in interpreting the functions of consumer products.	K3
CO3	To analyze and recommend various analytical techniques to assess the standard of various consumer products.	K4
CO4	To appraise the adverse impact of adulterants used in the food materials and consumer products.	K5
CO5	To summarize and validate the effect of various chemical constituents used in consumer products.	K6

Course Code	PCH3VA01				
Course Title	HERBAL PRODUCT DEVELOPMENT AND FORMULATION				
Credits	1				
Hours/Week	2				
Category	Value Added Course (VAC) - Theory				
Semester	III				
Regulation	2022				
Course Overvi	ew				
1. This course	intend to provide the fundamental aspects of chemistry of herbal medicine				
2. It also highl	ights the applications of compounds of plants origin.				
3. This paper ex	xplores the various analytical techniques used to study the standard of herbal				
medicinal pr	oducts.				
4. The course of	covers the hygiene and usage of herbal products				
5. The course also describes the various components of manufacture of herbal medicines					
and their medicinal applications.					
Course Object	ives				
1. To understa	and the indigenous tradition of herbal medicinal practice and to impart				
awareness re	egarding the vitality of herbal product development				
2. To train the	students to develop entrepreneurial skill in herbal product production and				
marketing	marketing				
3. To familiari	3. To familiarize the medicinal uses to herbals and to scientifically validate and standardize				
crude drugs.					
4. To justify th	4. To justify the usage of herbs in modern medicinal formulation.				
5. To compile	the various components in the manufacture of medicine				
Dranaquisitas	Design of Chamistry				

Prerequisites	Basics of Chemistry
---------------	---------------------

UNIT	CONTENT	HOURS
Ι	 Introduction to Herbs and Herbal Medicines 1.1 Importance of Herbs in human life - Medicinal properties of Herbal plants - Chronic diseases and Herbs - Traditional medicines and its worldwide applications 1.2 Herbal Based industry: Scope, study of infrastructure, staff requirements, project profiles, equipment, processing, regulatory requirements, research and development. 1.3 Role of natural products in herbal medicines. General status and importance of herbal medicines in the chronic diseases. Safety of herbals/herbal pharmacovigilance. W.H.O Policy on herbal medicines. 	6
II	 Herbal Processing and Extraction Process 2.1 Definition of herb, herbal extraction, herbal medicines and herbal drug preparations - Process of phytochemical/Bioactive compounds extraction and isolation - Extraction techniques - Maceration, Percolation, Soxhlet, etc - Isolation of potential bioactive compounds through TLC, column chromatography and prep-HPLC techniques 2.2 Preparation of Kuzhi Thailam, Kashayam, Suranam, etc Synthetic approach for the identified active compounds to ease the cost effective herbal drug product availability. 2.3 Source, selection, identification and authentication of herbal materials - Drying and processing of herbal raw materials. Packing and labelling of finished products. 	6
III	 Standardization of Herbal Extracts as per WHO/cGMP Guidelines 3.1 Physical, chemical, spectral and toxicological standardization - Chromatographic and Spectrometric - Qualitative and quantitative estimations exemplified by the methods of preparation of at least two standardized extracts. 3.2 Stability studies for the different types of extracts and its secondary metabolites. Predictable chemical and galenical changes. 3.3 Structure based Drug Design Approach: Enhancement of bioactivity through structural modification on the identified phytoconstituents - Isomeric compounds and its specificity in bioactivity. 	6

IV	Herbal Product Development	6	
	4.1 Preparation of liquid orals, tablets, capsules, ointments, creams and		
	cosmetics Methods involved in monoherbal and polyherbal		
	formulation with their merits and demerits. Excipients used in herbal		
	formulation - Synergistic effects of combined Herbal medicines		
	4.2 Study of Drugability: Compatibility studies, Stability studies,		
	Bioavailability and Pharmacokinetic aspects for herbal drugs with		
	examples of well-known documented and clinically used herbal drugs		
	- Drugability comparison with the existing standard drugs.		
	4.3 Quality Control of finished herbal medicinal products.		
V	Screening of Natural Products for the Following Biological Activities	6	
	5.1 Method for the identification and screening of potential bioactive		
	compounds through TLC, HPLC, GC and Mass Spectrometry.		
	5.2 Thermal stability of secondary metabolites present in the Herbal plants		
	during the initial screening - Identification of Active Principals,		
	Examples of any five bioactive compounds and their medicinal uses.		
	5.3 Screening of natural products for the following biological activities		
	(a) Antidiabetic (b) Anticancer (c) Antihypertensive (d)		
	Antiarrhythmics		
	(e) Antipyretics (f) Antioxidants (g) Antibacterial (h)Antifungal		
	(i) Antiepileptic (j) Osteoporosis (k) Nephroprotective		
	(1) Immunomodulators (m) Alzheimers (n) Antifertility		
Text Bo	oks		
1. Treas	e, G.E. and Evans, W.C., Pharmacognosy. 13th Edition, Baillière Tindall, Lond	don, 1989.	
2. Walli	s T.E., Textbook of Pharmacognosy, 5th Edition, New Delhi: CBS, 2005.		
3. AC M	Ioffat, Clarke's Isolation and Identification of Drugs. 2nd ed. The Pharmaceutic	cal Press.	
1986	5.		
4. C.K.	Kokate, Purohit, Ghokhale, Text book of Pharmacognosy 5th edn, Nirali F	Prakassan.,	
1996	5.		
5. Harbo	orne, J.B., Phytochemical Methods. Chapman and Hall Ltd., London, 1973.		
Suggeste	ed Readings		
1. A.A.	Farooqui and B.S. Shreeramu, Cultivation of medicinal and aromatic crops, 1st	t edn,	
Unive	rsity press, 2001.		
2. S.N. Y	2. S.N. Yoganarasimhan, Medicinal plants of India, 1st edn, Interline publication Pvt. Ltd., 20		
	3. Paul M. Dewick, Medicinal natural products (a biosynthetic approach), 1st edn, John Wiley		
	and sons Ltd., England 1998.		
	B. Kaufman, Natural Products from plants, 1st edn, CRC press, New York, 19	98.	
L	_		

- 5. P. Pushpangadam, UIF Nyman, V. George, Glimpses of Indian Ethanopharmacology, Tropical botanic Gardon and research institute, 1995.
- 6. Raphael Ikan, Natural Products, A lab guide, 2nd edn, academic press, 1991.

Web Resources

- 1. https://pubmed.ncbi.nlm.nih.gov/24290486/
- 2. https://wholisticmatters.com/
- 3. https://www.ncbi.nlm.nih.gov/
- 4. https://www.hopkinsmedicine.org/
- 5. https://cdri.res.in/Herbal.aspx

COs	CO DESCRIPTION	Cognitive	
		Level	
CO1	Understand the scientific bases of herbal medicinal products.	K1, K2	
CO2	To apply the basic concepts in interpreting the functions of herbal	K3	
	medicinal products.		
CO3	To analyse and recommend various analytical techniques to assess	K4	
	the standard of various herbal medicinal products.		
CO4	Appraise the adverse impact of adulterants used in the herbal	K5	
	medicinal products.		
CO5	Summarize and validate the effect of various chemical constituents	K6	
	used in herbal medicinal products.		

LOCF BASED DIRECT ASSESSMENTS

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED CIA QUESTION PAPER FORMAT (PG)

SECTION		Q. NO	COGNITIVE LEVEL (CL)						
			K1	K2	К3	K4	К5	K6	
Α	(5 x 1 = 5)	1(a)	+						
	Answer ALL	(b)	+						
		(c)	+						
		(d)	+						
		(e)	+						
	(5 x 1 = 5)	2 (a)		+					
	Answer ALL	(b)		+					
		(c)		+					
		(d)		+					
		(e)		+					
В	(1 x 8 = 8)	3			+				
	Answer 1 out of 2	4			+				
С	(1 x 8 = 8)	5				+			
	Answer 1 out of 2	6				+			
D	$(1 \times 12 = 12)$	7					+		
	Answer 1 out of 2	8					+		
Е	(1 x 12 = 12)	9						+	
	Answer 1 out of 2	10						+	
No. of CL based Questions with Max. marks			5 (5)	5 (5)	1 (8)	1 (8)	1 (12)	1 (12)	
No. of CO based Questions with Max. marks			CO1		CO2	CO3	CO4	CO5	
			10 ((10)	1 (8)	1 (8)	1 (12)	1 (12)	

Forms of questions of **Section A** shall be MCQ, Fill in the blanks, True or False, Match the following, Definition, Missing letters. Questions of **Sections B, C, D** and **E** could be Open Choice/ built in choice/with sub sections. Component III shall be exclusively for cognitive levels K5 and K5 with 20 marks each. CIA shall be conducted for 50 marks with 90 min duration.

SECTION		Q. NO	COGNITIVE LEVEL (CL)						
		Ι Γ	K1	K2	К3	K4	К5	K6	
Α	(5 x 1 = 5)	1(a)	+						
	Answer ALL	(b)	+						
		(c)	+						
		(d)	+						
		(e)	+						
	(5 x 1 = 5)	2(a)		+					
	Answer ALL	(b)		+					
		(c)		+					
		(d)		+					
		(e)		+					
В	$(3 \times 10 = 30)$	3			+				
	Answer 3 out of 5	4			+				
		5			+				
		6			+				
		7			+				
С	(2 x 12.5 = 25)	8				+			
	Answer 2 out of 4	9				+			
		10				+			
		11				+			
D	(1 x 15 = 15)	12					+		
	Answer 1 out of 2	13					+		
Ε	$(1 \times 20 = 20)$	14						+	
	Answer 1 out of 2	15						+	
No. of CL based Questions with Max. marks			5 (5)	5 (5)	3 (30)	2 (25)	1 (15)	1 (20)	
No. of CO based Questions with Max. marks		narks	CO1		CO2	CO3	CO4	CO5	
		F	10 (10)		3 (30)	2 (25)	1 (15)	1 (20)	

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED END SEMESTER EXAMINATION QUESTION PAPER FORMAT (PG)

IMPORTANT

- Forms of questions of **Section A** shall be MCQ, Fill in the blanks, True or False, Match the following, Definition, Missing letters.
- Questions of Sections B, C, D and E could be Open Choice/ built in choice/questions with sub divisions.
- Maximum sub divisions in questions of Sections B, C shall be 2 and 4 in Sections D, E).

Course Outcome	C01		CO2	CO3	CO4	CO5	TOTAL
Cognitive Levels	K1	K2	К3	K4	K5	K6	
CIA 1	5	5	8	8	12	12	50
CIA 2	5	5	8	8	12	12	50
Comp III	-	-	-	-	20	20	40
Semester	5	5	30	25	15	20	100
Total Marks (CL)	15 (6%)	15 (6%)	46 (19%)	41 (17%)	59 (25%)	64 (27%)	240
Total Marks (CO)	30 (12%)		46 (19%)	41 (17%)	59 (25%)	64 (27%)	240

TOTAL MARKS DISTRIBUTION OF DIRECT ASSESSMENTS BASED ON CL AND CO (PG)