LEARNING OUTCOMES BASED CURRICULUM FRAME WORK (LOCF) FOR POSTGRADUATE PROGRAMMES

(With effect from 2022-23)

MSc Data Science Department of Data Science

LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600034

PREFACE

Data Science will revolutionize every industry in the near future. India has the opportunity to be the talent provider to the world for data science. Spurring data science-based innovation and establishing data science-ready infrastructure will be critical for preparing India's jobs and skills markets for a data science-based future. Keeping in mind the extraordinary importance of data science, Loyola College has decided to start the Department of Data Science and offer M.Sc (Data Science) Programme from June 2019. At present, the department has four experienced staff members. their field all with Ph.D qualification in own of specialization. Be it financial services, healthcare, education or even security and governance, data science can be utilised for the benefit of citizens and the country. The global economic impact associated with the use, development, and adoption of data science from 2022 through 2027 is expected to be whopping \$1.84 trillion to \$2.95 trillion!

The main objective of this first-of-its-kind M.Sc. (Data Science) Programme is to enable the students to get a very good exposure to the promising field of data science. The PG Programme will lay a strong theoretical foundation that will enable the students to develop their own customized data science algorithms needed for deriving insights from very large data sets, which are now continuously generated, thanks to IoT, Social Media and Digitisation. Apart from the regular class room interactions, the PG Programme will involve a lot of guest lectures by industry experts, intensive lab work and discussion of several business case studies. The students will undergo an internship program at the end of second semester and carry out a major project in the fourth semester.

CONTENTS

S. No	Table of Contents	Page					
1.	Vision and Mission of Loyola college						
2.	Vision and Mission of the Department						
3.	Programme Educational Objectives (PEOs)	3					
4.	Programme Outcomes (POs)	4					
5.	Programme Specific Outcomes (PSOs)	5					
6.	PG CBCS Curriculum Template	6					
7.	PG Overall Course Structure	7					
8.	Course Descriptors (Offered by the Department)						
(1)	PDS1501 Foundations of Data Science	11					
(2)	PDS1502 Fundamentals of Mathematics	14					
(3)	PDS1503 Statistics and Probability	17					
(4)	PDS1504 Python for Data Science	20					
(5)	PDS1505 Python for Data Science - Lab	22					
(6)	PDS1506 Machine Learning	24					
(7)	PDS1507 Machine Learning – Lab	27					
(8)	PDS2501 Statistical Inference	30					
(9)	PDS2502 Big Data Analytics	33					
(10)	PDS2503 Big Data Analytics - Lab	36					

(11)	PDS2504	NoSQL Databases	38
(12)	PDS2505	NoSQL Databases – Lab	41
(13)	PDS2601	Elective 1A: Market Analytics	43
	PDS2602	Elective 1B: Health Analytics	46
(14)	PDS2506	Research Methodology	49
(15)	PDS3501	Multivariate Data Analytics	52
(16)	PDS3502	Deep learning	55
(17)	PDS3503	Deep Learning - Lab	57
(18)	PDS3504	Cloud Computing	60
(19)	PDS3505	Cloud Computing - Lab	63
(20)	PDS3601	Elective 2A: Natural Language Processing	66
	PDS3602	Elective 2B: Reinforcement Learning	69
(21)	PDS3701	Mean Stack	72

9.	Course Descriptors (Offered to other Departments)	
(1)	PDS2901 Cross Disciplinary: Data Analytics/Visualization	75
(2)	PDS3701 INTER DISCIPLINARY: STATISTICS FOR	78
	COMPUTER SCIENCE	

VISION AND MISSION OF LOYOLA COLLEGE

VISION

Towards holistic formation of youth, grounded in excellence, through accompaniment to serve the humanity.

MISSION

- To provide inclusive education through an integral and holistic formative pedagogy.
- To promote skills that prepares them for the future.
- To kindle in young minds, the spirit of social and environmental justice with a blend of academic excellence and empathy.
- To stimulate critical and conscientious scholarship leading to meaningful and innovative human Capital.

CORE VALUES

- Cura Personalis
- Pursuit of Excellence
- Moral Rectitude
- Social Equity
- Fostering solidarity
- Global Vision
- Spiritual Quotient

VISION AND MISSION OF THE DEPARTMENT

VISION

To be the premier department in shaping young minds to achieve eminence in digital transformation.

MISSION

To provide a learning ambience and curiosity to explore new avenues with social responsibilities.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

(School of Computational Sciences)

PEOs	STATEMENTS						
	PEO1 LEARNING ENVIRONMENT AND LIFE LONG LEARNING						
PEO1	To access academic facilities in an environment of inclusiveness and inquisitiveness for effective and immersed learning throughout life to attain excellence in the chosen field of computational sciences.						
	GLOBALLY RELEVANT CURRICULUM AND SCIENTIFIC						
	TEMPERAMENT						
PEO2	To think innovatively, analyse scientifically and make decisions appropriately, for handling contemporary global concerns through the knowledge earned in the computational sciences curriculum.						
	ACADEMIC EXCELLENCE AND CORE COMPETENCY						
PEO3	To excel in modern computational techniques and compete in higher studies/career, for						
	addressing contemporary challenging problems with ease.						
	SKILL DEVELOPMENT AND ENTREPRENEURSHIP						
PEO4	To develop analytical, logical and critical problem-solving skills for executing professional						
	Work and become experts/entrepreneurs in the field of computational sciences.						
	ENVIRONMENT AND SUSTAINABILITY						
PEO5	To identify real world problems concerning environment and other issues; and apply the expertise in the computational sciences, to face the challenges and provide sustainable Solutions.						

PROFESSIONALISM AND ETHICS WITH SOCIAL RESPONSIBILITY

PEO6 To equip themselves with the necessary competency towards professionalism in the computational sciences maintaining ethical standards in addressing the needs of industry and society.

PROGRAMME OUTCOMES (POs)

(School of Computational Sciences)

POs	STATEMENTS
	DISCIPLINARY KNOWLEDGE, INFORMATION/DIGITAL LITERACY &LIFE-
PO1	LONG LEARNING:
	To acquire scholarly knowledge for life-long learning of the respective discipline of
	computational sciences and demonstrate digital literacy.
	CRITICAL, ANALYTICAL & SCIENTIFIC THINKING IN PROBLEM-SOLVING
	To critically explore scientifically analyze and develop solutions through various
PO2	computational techniques for real time problems
	GLOBALLY RELEVANT CURRICULUM, INDUSTRY REQUIREMENTS AND
PO3	RESEARCH COMPETENCE
	To acquire research competence and meet industry needs through a globally relevant
	curriculum
	PROFESSIONALISM AND ETHICS
D O 4	To cultivate a promising work culture within ethical frameworks demonstrating exemplary
PO4	professionalism.
	TEAMWORK AND EFFECTIVE COMMUNICATIONS
	To manifest effective communication skills for constructive team work and Progress as
PO5	professionals in key positions in the respective domains.
	EMPOWERMENT WITH EMPATHY TOWARDS SUSTAINABLE
PO6	SOCIAL AND ENVIRONMENTAL CONSCIOUSNESS
	To realize social and environmental problems with empathy and contribute the
	computational Expertise to face the challenges and provide sustainable solutions.
	SKILL DEVELOPMENT, EMPLOYABILITY, LEADERSHIP AND
PO7	ENIREPRENEURSHIP
10/	To develop expertise and professional skills for employment in the domain of
	computational sciences and emerge as leaders and entrepreneurs.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

(Department of Data Science)

PSOs	STATEMENTS
PSO1	Ability to identify analyze and design solutions for data analytics problems using
	fundamental
	principles of mathematics, Statistics, computing sciences, and relevant domain disciplines
PSO2	Acquire the skills in handling data analytics programming tools towards problem solving
	and
	Solution analysis for domain specific problems.
	Understand and commit to professional ethics and cyber regulations, responsibilities, and
PSO3	norms of
1505	professional computing practices
	Understand the role of statistical approaches and apply the same to solve the real-life
PSO4	problems in
1501	the fields of data analytics.
	Ability to apply the advanced concepts of Big Data that pave the way to create a platform
PSO5	to gain
1505	analytical skills which impact business decisions and strategies
PSO6	Apply the research-based knowledge to analyse and solve advanced problems in data
	analytics.
	To become a skilled Data Scientist in industry, academia, or government and software
PSO7	tools for
	data storage, analysis and visualization

T S Foundations of Data Science(4h+4c), Fundamentals of Mathematics(4h+4c) Nathematics(4h+4c) NoSQL Multivariate Data Analytics (4h+4c), Deep learning (4h+4c), Deep Learning (4h+4c), Deep Learning (4h+4c), Deep Learning (4h+4c), Deep Learning (4h+4c), Deep Learning (4h+4c), Cloud Computing MC Statistics and Probability(4h+4c), Lab(4h+3c), Deep Learning (4h+4c), Cloud Computing Statistics and Probability(4h+4c), Python for Data Science Lab Lab(4h+3c), Lab(4h+3c), Lab(4h+3c) Cloud Computing - Lab (4h+4c), Machine Learning Lab (4h+4c), Research Methodology(3h+3c) Lab (4h+3c), Machine Learning(5h+4c) Research Methodology(3h+3c) ME Elective 1A: Financial Analytics (4h+2c) Elective 1B: Health Analytics (4h+2c) Elective 2A: Natural Language Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) ME MEAN Stack (6h+3c) MEAN Stack (6h+3c)	PAR	SEMESTER I	SEMESTER II	SEMESTER III	SEMESTER IV	CREDIT
Met Foundations of Data Science(4h+4c), Fundamentals of Mathematics(4h+4c), NoSQL Multivariate Data Analytics (4h+4c), Deep learning (4h+4c), Deep learning - Lab MC Mathematics(4h+4c), Mathematics(4h+4c), Databases(4h+3c), Probability(4h+4c), Probability(4h+4c), Lab(4h+3c), Deep learning - Lab MC Big Data Analytics - Probability(4h+4c), Lab(4h+3c), Cloud Computing (4h+4c), NoSQL Databases - Science Lab (4h+4c), Mathine Learning Lab (4h+4c), Lab(4h+3c), NoSQL Databases - Science(5h+4c) Cloud Computing - Lab (4h+3c), Python for Data Science(5h+4c) Research Methodology(3h+3c) Elective 2A: Natural Language Processing(4h+2c), ME Elective 1A: Financial Analytics (4h+2c) Elective 2A: Natural Language Processing(4h+2c), ME Mathematics (4h+2c) Elective 1B: Health Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) ME MEAN Stack (6h+3c) MEAN Stack (6h+3c)	Т					S
Science(4h+4c), Inference(4h+3c), Analytics (4h+4c), Fundamentals of Big Data Deep learning - Lab Mathematics(4h+4c), Analytics(4h+3c), Deep Learning - Lab), NoSQL (4h+3c), Statistics and Big Data Analytics - Cloud Computing Probability(4h+4c), Lab(4h+3c), Cloud Computing - Python for Data NoSQL Databases - Lab (4h+3c), Science Lab Lab(4h+3c) Cloud Computing - (4h+4c) NoSQL Databases - Lab (4h+3c), Python for Data Science(5h+4c) Methodology(3h+3c) Machine Learning(5h+4c) Methodology(3h+3c) Machine Elective 1A: Financial Language Processing(4h+2c), Elective 1B: Health Processing(4h+2c), ME Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Reinforcement Learning(4h+2c) MEAN Stack (6h+3c) Internship(1c)		Foundations of Data	Statistical	Multivariate Data		
Fundamentals of Mathematics(4h+4c) Big Data Deep learning (4h+4c), Deep Learning – Lab (4h+3c), MC NoSQL (4h+3c), Databases(4h+3c), Deep Learning – Lab (4h+3c), Statistics and Probability(4h+4c), Python for Data Big Data Analytics - Lab(4h+3c), Cloud Computing Science Lab (4h+4c) Lab(4h+3c), Cloud Computing – Lab (4h+4c), Python for Data Science(5h+4c) Research Machine Learning(5h+4c) Research Machine Learning(5h+4c) Methodology(3h+3c) ME Elective 1A: Financial Analytics (4h+2c) Pilective 1B: Health Analytics (4h+2c) Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) ME Mathematics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) ME MEAN Stack (6h+3c) MEAN Stack (6h+3c)		Science(4h+4c),	Inference(4h+3c),	Analytics (4h+4c),		
Mathematics(4h+4c) Analytics(4h+3c), Deep Learning – Lab MC NoSQL (4h+3c), Statistics and Big Data Analytics - (4h+4c), Probability(4h+4c), Lab(4h+3c), Cloud Computing Python for Data NoSQL Databases - Lab (4h+3c), Science Lab Lab(4h+3c) Lab (4h+3c), Machine Learning Lab (4h+3c) Lab (4h+3c), Python for Data Research Methodology(3h+3c) Machine Learning(5h+4c) Methodology(3h+3c) Machine Elective 1A: Financial Language Percessing(4h+2c), Elective 1B: Health Processing(4h+2c), ME Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Elective 2B: Reinforcement MEAN Stack (6h+3c) MEAN Stack (6h+3c)		Fundamentals of	Big Data	Deep learning (4h+4c),		
MC), NoSQL (4h+3c), Statistics and Big Data Analytics - (4h+4c), Probability(4h+4c), Lab(4h+3c), Cloud Computing - Python for Data NoSQL Databases - Lab (4h+4c), Science Lab Lab(4h+3c) Lab (4h+3c), (4h+4c), Machine Learning Lab(4h+3c) Lab (4h+4c), Research Methodology(3h+3c) MAChine Elective 1A: Financial Elective 2A: Natural Analytics (4h+2c) Elective 1B: Health Processing(4h+2c), ME Elective 1B: Health Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) ID Internship(1c) MEAN Stack (6h+3c)		Mathematics(4h+4c	Analytics(4h+3c),	Deep Learning – Lab		
MC Databases(4h+3c), Big Data Analytics - Lab(4h+3c), Python for Data Science Lab Cloud Computing (4h+4c), NoSQL Databases - Lab(4h+3c), Yuthon for Data Science Lab Lab(4h+3c), Lab(4h+3c) Cloud Computing - Lab (4h+3c), Yuthon for Data Science(5h+4c), Machine Learning(5h+4c) Research Methoology(3h+3c) Lab(4h+3c), Machine Learning(5h+4c) Elective 1A: Financial Analytics (4h+2c), Elective 1B: Health Analytics (4h+2c), Elective 2A: Natural Language ME Elective 1A: Financial Analytics (4h+2c), Elective 1B: Health Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) ME MEAN Stack (6h+3c) MEAN Stack (6h+3c)),	NoSQL	(4h+3c),		
Statistics and Big Data Analytics - (4h+4c), Probability(4h+4c), Lab(4h+3c), Cloud Computing - Python for Data NoSQL Databases - Lab (4h+3c), Science Lab Lab(4h+3c) Lab (4h+3c), (4h+4c) Machine Learning Lab (4h+3c) Lab (4h+4c), Python for Data Research Science(5h+4c) Methodology(3h+3c) Methodology(3h+3c) Machine Elective 1A: Financial Elective 2A: Natural Language Elective 1B: Health Processing(4h+2c), Elective 1B: Health Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) Methodology Image: MEAN Stack (6h+3c) Methodology	MC		Databases(4h+3c),	Cloud Computing		
Probability(4h+4c), Lab(4h+3c), Cloud Computing – Python for Data NoSQL Databases - Lab (4h+3c), Science Lab Lab(4h+3c) Lab (4h+3c), (4h+4c) Machine Learning Lab (4h+3c), Python for Data Research Science(5h+4c) Methodology(3h+3c) Machine Elective 1A: Financial Learning(5h+4c) Elective 1A: Financial ME Elective 1B: Health Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) ID MEAN Stack (6h+3c)		Statistics and	Big Data Analytics -	(4h+4c),		
Python for Data NoSQL Databases - Lab (4h+3c), Science Lab Lab(4h+3c) Lab(4h+3c), (4h+4c) Machine Learning Lab(4h+3c) Python for Data Research Methodology(3h+3c) Machine Methodology(3h+3c) Methodology(3h+3c) Machine Elective 1A: Financial Elective 2A: Natural Language Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Elective 1A: Stack (6h+3c) ID MEAN Stack (6h+3c) MEAN Stack (6h+3c)		Probability(4h+4c),	Lab(4h+3c),	Cloud Computing –		
Science Lab (4h+4c) Machine Learning Lab (4h+4c), Lab(4h+3c) Python for Data Science(5h+4c) Machine Learning(5h+4c) Research Methodology(3h+3c) Machine Learning(5h+4c) Elective 1A: Financial Analytics (4h+2c) Elective 1B: Health Analytics (4h+2c) Elective 2A: Natural Language ME Elective 1B: Health Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Reinforcement Learning(4h+2c) ID MEAN Stack (6h+3c) SI Internship(1c)		Python for Data	NoSQL Databases -	Lab (4h+3c),		
(4h+4c) Machine Learning Lab (4h+4c), Python for Data Science(5h+4c) Methodology(3h+3c) Machine Learning(5h+4c) Machine Elective 1A: Financial Learning(5h+4c) Elective 1A: Financial Analytics (4h+2c) Elective 2A: Natural Language Processing(4h+2c), Elective 1B: Health Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) Elective 2B: Reinforcement Learning(4h+2c) ID MEAN Stack (6h+3c)		Science Lab	Lab(4h+3c)			
Machine Learning Lab (4h+4c), Research Python for Data Science(5h+4c) Research Machine Learning(5h+4c) Methodology(3h+3c) Machine Learning(5h+4c) Elective 1A: Financial Analytics (4h+2c) Elective 2A: Natural Language ME Elective 1B: Health Analytics (4h+2c) Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) ID MEAN Stack (6h+3c) SI Internship(1c)		(4h+4c)				
Lab (4h+4c), Research Python for Data Science(5h+4c) Machine Learning(5h+4c) Research Methodology(3h+3c) ME Elective 1A: Financial Analytics (4h+2c) Elective 1B: Health Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) ME MEAN Stack (6h+3c) ID Internship(1c)		Machine Learning				
Python for Data Science(5h+4c) Machine Learning(5h+4c) Research Methodology(3h+3c) Methodology(3h+3c) ME Elective 1A: Financial Analytics (4h+2c) Elective 1B: Health Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Elective 2B: Reinforcement Learning(4h+2c) ME ME ME ME ME ME ME Internship(1c) MEAN Stack (6h+3c)		Lab (4h+4c),				
Science(5h+4c) Methodology(3h+3c) Machine Learning(5h+4c) Elective 1A: Financial Elective 2A: Natural Analytics (4h+2c) Language Elective 1B: Health Processing(4h+2c), Elective 1B: Health Processing(4h+2c), Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Image: Comparison of the state of the stat		Python for Data	Research			
Machine Learning(5h+4c) Elective 1A: Financial Analytics (4h+2c) Elective 2A: Natural Language ME Elective 1B: Health Analytics (4h+2c) Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) ME Manalytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) ME MEAN Stack (6h+3c) ID Internship(1c)		Science(5h+4c)	Methodology(3h+3c)			
Learning(5h+4c) Elective 1A: Financial Elective 2A: Natural Analytics (4h+2c) Language Elective 1B: Health Processing(4h+2c), Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Image: the state of t		Machine				
Image: Meter State Elective 1A: Financial Analytics (4h+2c) Elective 2A: Natural Language ME Elective 1B: Health Analytics (4h+2c) Processing(4h+2c), Elective 2B: Reinforcement Learning(4h+2c) Image: Meter State Meter State Meter State Image: State Internship(1c) Meter State Meter State		Learning(5h+4c)				
ME Elective 1A: Financial Analytics (4h+2c) Elective 2A: Natural Language ME Analytics (4h+2c) Language Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Reinforcement Learning(4h+2c) ID ME MEAN Stack (6h+3c) SI Internship(1c) Internship(1c)						
ME Analytics (4h+2c) Language ME Elective 1B: Health Processing(4h+2c), Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Learning(4h+2c) MEAN Stack (6h+3c) ID Internship(1c)			Elective 1A: Financial	Elective 2A: Natural		
ME Elective 1B: Health Processing(4h+2c), Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Image: Comparison of the second sec			Analytics (4h+2c)	Language		
ME Analytics (4h+2c) Elective 2B: Reinforcement Learning(4h+2c) Image: Constraint of the second			Elective 1B: Health	Processing(4h+2c),		
ID Internship(1c) Reinforcement Learning(4h+2c) ID Internship(1c)	ME		Analytics (4h+2c)	Elective 2B:		
Learning(4h+2c) Learning(4h+2c) Learning(4h+2c) MEAN Stack (6h+3c) SI Internship(1c)				Reinforcement		
ID MEAN Stack (6h+3c) SI Internship(1c)				Learning(4h+2c)		
ID MEAN Stack (6h+3c) SI Internship(1c)						
ID MEAN Stack (6h+3c) SI Internship(1c)						
ID Internship(1c)				MEAN Stack (6h+3c)		
SI Internship(1c)	ID					
	SI		Internship(1c)			
PJ Project Architecture	PJ				Project Architecture	
Planning (7C)					Planning (7C)	
Project Data					Project Data	
Engineering(6C)					Engineering(6C)	
Project Coding					Project Coding	
Testing &					Testing &	

M.Sc. Restructured CBCS curriculum with effective from June-2022

				Implementation(7C)	
		Cross Disciplinary: Data			
CD		Analytics/Visualization			
		(3h+1c)			
MO		Self-Study Course -			
		Online $(2h + 2c)$			
LS		Life Skill (2h + 1c)			
SK			Soft Skill (2h + 1c)		
VA			Value Added Course		
			(2h + 1c)		
SL			Service Learning (2h +		
			1c)		
Hr/C	30h/28C	30h/25 C	30h/26C	30h/20 C	99
5					

Correlation Rubrics

High	Moderate	Low	No Correlation
3	2	1	0

Mapping of PEOs with Vision and Mission

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
Vision	3	3	3	3	3	3
Mission	3	3	3	3	3	3

Mapping of POs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
PO1	3	3	3	3	3	3
PO2	3	3	3	3	3	3
PO3	3	3	2	2	3	3
PO4	3	3	3	3	2	3
PO5	3	2	3	3	3	3
PO6	3	3	3	3	3	3
PO7	3	3	2	3	3	2

Mapping of PSOs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
PSO1	3	3	3	3	3	3
PSO2	3	3	3	3	3	3
PSO3	3	3	3	3	3	3
PSO4	3	3	3	3	3	3
PSO5	3	3	3	3	3	3
PSO6	3	3	3	3	3	2
PSO7	3	3	3	3	3	3

Mapping of PSOs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
PSO1	3	3	3	3	3	3	3
PSO2	3	3	3	3	3	3	3
PSO3	3	3	3	3	3	3	3
PSO4	3	3	3	3	3	3	3
PSO5	3	3	3	3	3	3	3
PSO6	3	3	3	3	3	3	3
PSO7	3	3	3	3	3	3	3

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI DEPARTMENT OF DATA SCIENCE (2022 - Restructured Curriculum)

OVERALL COURSE STRUCTURE

Sem	Subject Code	Course Title	T/L	Category	Cr.	Hrs.
Ι	PDS1501	Foundations of Data Science	Т	MC	4	4
	PDS1502	Fundamentals of Mathematics	Т	MC	4	4
Ι	PDS1503	Statistics and Probability	Т	MC	4	4
	PDS1504	Python for Data Science	Т	MC	4	5
	PDS1505	Machine Learning	Т	MC	4	5
ʻI	PDS1506	Python for Data Science - Lab	L	MC	4	4
	PDS1507	Machine Learning – Lab	L	MC	4	4
II	PDS2501	Statistical Inference	Т	MC	3	4
	PDS2502	Big Data Analytics	Т	MC	3	4
	PDS2504	NoSQL Databases	Т	MC	3	4
	PDS2506	Research Methodology	Т	MC	3	3
II	PDS2503	Big Data Analytics - Lab	L	MC	3	4
	PDS2505	NoSQL Databases - Lab	L	MC	3	4
II	PDS2601	Elective 1A: Financial Analytics	Т	ME	2	4
	PDS2602	Elective 1B: Health Analytics	Т	ME	2	4
II	PDS2401	Cross Disciplinary: Data	Т	CD	1	
		Analytics/Visualization				3
II	PDS2901	Self-Study Course - Online	Т	MO	2	-
II	PSS2902	Life Skill - SHE Dept	Т	LS	1	2
II	PDS2801	Internship	Р	SI	2	_
III	PDS3501	Multivariate Data Analytics	Т	MC	4	4
	PDS3502	Deep learning	Т	MC	4	4
	PDS3503	Deep Learning - Lab	L	MC	3	4
	PDS3504	Cloud Computing	Т	MC	4	4
	PDS3505	Cloud Computing - Lab	L	MC	3	4

III	PDS3601	Elective 2A: Natural Language	Т	ME	2	4
	PDS3602	Processing				
		Elective 2B: Reinforcement Learning				
III	PDS3301	MEAN Stack	L	ID	3	6
III	PSS3401	Soft Skill - SHE Dept	Т	SK	1	2
III	PSL3402	Service Learning Dept Course	Т	SL	1	2
III	PVA3403	Value Added Course	Т	VA	1	2
IV	PDS4801	Project Architecture Planning	PJ	MC	7	-
	PDS4802	Project Data Engineering	PJ	MC	6	-
IV	PDS4803	Project Coding, Testing & Implementation	PJ	MC	7	-

COURSES OFFERED TO OTHER DEPARMENTS

II	PDS2401	Cross Disciplinary: Data	Т	CD	1	
		Analytics/Visualization				3
III	PDS3301	INTER DISCIPLINARY: STATISTICS	Т	ID	3	6
		FOR				
		COMPUTER SCIENCE				

COURSE DESCRIPTOR

Semester I

Course Code	PDS1501
Course Title	FOUNDATIONS OF DATA SCIENCE
Credits	4
Hours/Week	4
Category	MC
Semester	I
Regulation	2022

Course Overview:

- 1. To understand the stages of Data science projects
- 2. Descriptive statistics helps to understand the characteristics of the features involved in the data.
- 3. Course enables one to perform data cleaning and explanatory data analysis.
- 4. Provides knowledge on statistical modelling and evaluation techniques.
- 5. Enables one to handle data from various domain like Banking, Healthcare, retail, automobile etc..

Course Objective:

- 1. To incorporate basic data pre-processing procedures.
- 2. To develop appropriate data reduction techniques.
- 3. To apply statistical tools to develop a model for prediction and decision making.
- 4. To evaluate the models developed and draw meaningful inference.

Pre requisites : Basic understanding of data handling

	SYLLABUS				
UNIT	CONTENT	HRS	COs	COGNITIVE LEVEL	
Ι	Introduction to Data Science -	8	CO1	K1	
	Evolution of Data Science -		CO2	K2	
	Data Science Roles – Stages in		CO3	K3	
	a Data Science Project –		CO4	K4	
	Applications of Data Science in		CO5	K5	
	various fields – Data Security			K6	
	Issues.				
II	Data Collection Strategies -	14	CO1	K1	
	Data Pre-Processing Overview		CO2	K2	
	– Data Cleaning – Data		CO3	K3	
	Integration and Transformation		CO4	K4	
	– Data Reduction – Data		CO5	K5	
	Discretization.			K6	

III	Descriptive Statistics - Mean,	14	CO1	K1
	Standard Deviation, Skewness		CO2	K2
	and Kurtosis – Box Plots –		CO3	K3
	Pivot Table – Heat Map –		CO4	K4
	Correlation Statistics –		CO5	K5
	ANOVA.			K6
IV	Simple and Multiple	12	CO1	K1
	Regression – Model Evaluation		CO2	K2
	using Visualization - Residual		CO3	K3
	Plot – Distribution Plot –		CO4	K4
	Polynomial Regression and		CO5	K5
	Pipelines - Measures for In-			K6
	sample Evaluation – Prediction			
	and Decision Making.			
V	Model Evaluation	12	CO1	K1
	Generalization Error - Out-of-		CO2	K2
	Sample Evaluation Metrics –		CO3	К3
	Cross		CO4	K4
	Validation – Overfitting –		CO5	K5
	Under Fitting and Model			K6
	Selection – Prediction by using			
	Ridge Regression –Testing			
	Multiple Parameters by using			
	Grid Search.			

TEXT BOOKS:

1. Jojo Moolayil, "Smarter Decisions : The Intersection of IoT and Data Science", PACKT, 2016.

2. Cathy O'Neil and Rachel Schutt, "Doing Data Science", O'Reilly, 2015.

3. David Dietrich, Barry Heller, Beibei Yang, "Data Science and Big data Analytics", EMC 2013

4. Raj, Pethuru, "Handbook of Research on Cloud Infrastructures for Big Data Analytics", IGI Global.

SUGGESTED READINGS:

- 1. Jojo Moolayil, "Smarter Decisions: The Intersection of IoT and Data Science", PACKT, 2016.
- 2. Joel Grus, "Data Science from Scratch" O'REILLY, 2018.
- 3. Rafael A. Irizarry, "Introduction to Data Science", Chapman & Hall, 2022
- 4. Gupta. S.C. & Kapoor, V.K., Fundamentals of Mathematical Statistics, Sultan Chand & Sons Pvt. Ltd. New Delhi, 2002.

Website:

- 1. https://www.udemy.com/course/introduction-to-data-science/
- 2. https://www.youtube.com/watch?v=9lRv01HDU0s/Ridge and Lasso
- 3. https://www.coursera.org/learn/regression-models
- **4.** https://www.simplilearn.com/tutorials/machine-learning-tutorial/overfitting-and-underfitting

PDS1501-FC	OUNDATIONS OF DATA SCIENCE (MC)	Cognitive levels
CO1	Understand and pre-process data	K1, K2
CO2	Apply summary measures of averages, dispersion and plots to draw useful conclusions	К3
CO3	Statistically analyse the strengths of relationship between variables.	K4
CO4	Evaluate real-life problems and draw inferences	K5
C05	Construct suitable statistical models and evaluate for meaningful inferences.	K6

Course Outcomes (COs) and Cognitive Level Mapping

SEMESTER I COURSE DESCRIPTION

Course Code	PDS1502
Course Title	FUNDAMENTALS OF MATHEMATICS
Credits	4
Hours/Week	4
Category	MC
Semester	Ι
Regulation	2022

Course Overview:

1. Demonstrate understanding of basic mathematical concepts in data science, relating to set language, algebra, and calculus.

- 2. Understanding of vector Space, its operations and relations.
- 3. Perform matrix operations to transform and decompose data.
- 4. Identify influence of multi variables using vector calculus.
- 5. Study on Multicollinearity using differences and similarities.

Course Objective:

- 1. To perform operations on a set and its relations.
- 2. Understand the numerical methods to solve and find the roots of the equations.
- 3. To perform operations on vector space and matrices.
- 4. To handle multiple variables and study the influence of factors using vector calculus.
- 5. To study the various methods of studying differences and similarities between vectors.

Pre requisites : Basic knowledge of Mathematical Concepts

	SYLLABU	U S		
UNIT	CONTENT	HRS	COs	COGNITIVE
				LEVEL
Ι	Set Theory - Number system, Sets and their		CO1	K1
	operations, Relations and functions - Relations	6	CO2	K2
	and their types, Functions and their types.		CO3	К3
	Quadratic Functions – Quadratic equations-		CO4	K4
	Minima, maxima, vertex, and slope. Gradients-		CO5	K5
	Gradient descents-Learning rate-Loss function.			K6
II	Introduction to vector spaces - Addition and	6	CO1	K1
	Multiplication- properties of vector spaces; Linear		CO2	K2

	dependence; Linear independence –		CO3	K3
	rank/dimension for vector space using gaussian		CO4	K4
	elimination.		CO5	K5
				K6
III	Rank and Nullity of a matrix- The null space of a	6	CO1	K1
	matrix - finding nullity and a basis -System of		CO2	K2
	linear equations-eigen values and eigen vectors-		CO3	К3
	Linearmapping-Linear transformation, Kernel and		CO4	K4
	Images - Linear transformations, ordered bases		CO5	K5
	and matrices; Image and kernel of linear			K6
	transformations.			
IV	Multivariable functions, Partial derivatives, Limit,	6	CO1	K1
	continuity and directional derivatives -		CO2	K2
	Multivariable functions: visualization; Partial		CO3	K3
	derivatives; Directional derivatives; Limits for		CO4	K4
	scalar-valued multivariable functions; Continuity		CO5	K5
	for multivariable functions; Directional			K6
	derivatives in terms of the gradient- maxima and			
	minima of single variable functions using			
	derivatives- maxima and minima of multivariate			
	functions using vector calculus.			
V	L_p Distances and their Relatives- Mahalanobis	6	CO1	K1
	Distance-Cosine and Angular Distance-Jaccard		CO2	K2
	Distance-Edit Distance-Angular distance-		CO3	K3
	Euclidean distance-Bag of words Vectors-k		CO4	K4
	grams-Normed similarities-set similarities.		CO5	K5
				K6

TEXT BOOKS:

- 1. Y.N.Singh, "Mathematical Foundations for Computer Science", New Age publication, 2005.
- 2. P.R.Vittal, "Mathematical Foundations", Margham Publications, January 2002.
- 3. Kenneth kunen, "The foundations of Mathematics", College Publication, 2009.
- 4. Shahnaz Bhathul, "Mathematical foundations for Computer Science", PH1 Learning, Second edition, 2010.

SUGGESTED READINGS:

- 1. Jeff M. Phillips, "Mathematical Foundations for Data Analysis", December 2018.
- 2. https://www.cs.utah.edu/~jeffp/M4D/M4D-v0.4.pdf
- 3. Micheal D. Greenberg, Foundations of Applied Mathematics, Dover Publications Inc., 2013.

Website:

- 1. https://www.udemy.com/course/linear-algebra-for-machine-learning
- 2. https://www.youtube.com/watch?v=_uDSWIy8wX0
- 3. https://www.youtube.com/watch?v=hh0vmyVybSU

Course Title	STATISTICS AND PROBABILITY			
	STATISTICS AND PROBABILITY			
Credits	4			
Hours/Week	4			
Category	MC			
Semester	I			
Regulation	2022			
Course Overview:				
Able to analyse basic characteristics of the features.				
Can perform univariate and Bivariate analysis.				
Able to apply Probability concepts.				
Can understand the concepts related to	Distribution Functions.			
Enable to identify and apply appropriat	e Probability Distributions.			
Course Objective:				
To perform Explanatory Data Analysis				
To study the relationship between two variables through correlation and regression.				
To study discrete and continuous Random Variables & related concepts.				
To identify and apply appropriate Prob	ability Distributions.			
Pre requisites: Basic understanding of Sta	tistics			

	SYLLABUS				
UNIT	CONTENT	HRS	COs	COGNITIVE LEVEL	
Ι	Sampling Techniques – Data	14	CO1	K1	
	Classification – Tabulation –		CO2	K2	
	Frequency and graphic		CO3	K3	
	Representation – Measures of		CO4	K4	
	Central Tendency – Measures of		CO5	K5	
	Variation – Quartiles and			K6	
	Percentiles- Moments -				
	Skewness and Kurtosis.				
II	Scatter Diagram – Karl Pearson's	15	CO1	K1	
	Correlation Coefficient – Rank		CO2	K2	
	Correlation –Correlation Coefficient		CO3	K3	
	for Bivariate Frequency Distribution –		CO4	K4	
	Regression Coefficients - Fitting of		CO5	K5	
	Regression Lines.			К6	

III	Random Experiment –	15	CO1	K1
	Sample Space – Events –		CO2	K2
	Axiomatic Definition of		CO3	K3
	probability –Addition		CO4	K4
	Theorem– Multiplication		CO5	K5
	Theorem – Baye's Theorem-			K6
	Applications.			
IV	Continuous and Discrete Random	15	CO1	K1
	Variables – Distribution Function of a		CO2	K2
	Random Variable – Probability Mass		CO3	K3
	Functions and Probability Density		CO4	K4
	Functions – Characteristic Functions –		CO5	K5
	Central Limit Theorems.			K6
V	Probability Distributions – Recurrence	15	CO1	K1
	Relationships – Moment Generating		CO2	K2
	Functions –Cumulant Generating		CO3	K3
	Functions – Continuous Probability		CO4	K4
	Distributions - Rectangular		CO5	K5
	Distribution – Binomial Distribution –			K6
	Poisson Distribution – Continuous			
	Probability Distributions – Uniform			
	Distribution - Normal Distribution –			
	Exponential Distribution			

REFERENCES:

- 1. Gupta,S.C.andKapoor,V.K.:"FundamentalsofMathematicalStatistics",Sultan&Chand&S ons, NewDelhi,11th Ed, 2002.
- 2. Hastie, Trevor, etal. "The elements of Statistical Learning", Springer, 2009.
- 3. Ross, S.M., "Introduction to Probability and Statistics", Academic Foundation, 2011.
- 4. Papoulis, A. and Pillai, S.U., "Probability, Random Variables and Stochastic Processes", TMH, 2010

Website:		
https://onlinecourses.nptel.ac.in/noc22_mg87/preview		
https://www.udemy.com/tutorial/learn-probability-concepts-and-counting-techniques		
sample-space-sample-points-and-events/		
https://www.udemy.com/tutorial/learn-probability-concepts-and-counting-		
techniques/concepts		
sample-space-sample-points-and-events/		

Course Outcomes (COs) and Cognitive Level Mapping

PDS1503 - STAT	ISTICS AND PROBABILITY (MC)	Cognitive levels
CO1	Concepts of descriptive Statistics and definitions	K1, K2
CO2	Problems in correlation and regression and its interpretation	К3
CO3	Concepts of Probability and their applications	K4
CO4	Concepts of discrete and continuous distribution functions	K5
C05	Identification and application of suitable probability distribution for a given problem situation	K6

Course Code	PDS 1504
Course Title	PYTHON FOR DATA SCIENCE
Credits	04
Hours/Week	05
Category	Major Core(MC)–Theory
Semester	Ι
Regulation	2022

Course Overview

- 1. Understand data structures and OOP concepts in Python
- 2. Explore the functionalities and applications of Numpy & Pandas packages
- 3. Provide hands on training in Data Wrangling
- 4. Apply Data Aggregation and Grouping operations on real time data sets.
- 5. Exposure to Data Visualization techniques made available by Python

Course Objectives

- 1. To develop Python programming skill with data science perspective
- 2. To perform Data Wrangling operations of different types
- 3.To effectively perform Data Aggregation and Grouping operations & Data Visualization

Prerequisites Basic programming knowledge.

	SYLLABUS				
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL	
Ι	Installing and using Jupyter Notebook –	12	CO1	K1,K2,K3	
	Creating and executing Python Programs		CO2	K4,K5,K6	
	- Statements - Expressions - Variables		CO3		
	– Operators – Data Types – Type		CO4		
	Conversions – Control Flow Statements		CO5		
	– Exception Handling				
II	Functions – Data Structures: Lists,	12	CO1	K1,K2,K3	
	Dictionaries, Tuples, Sets – File		CO2	K4,K5,K6	
	handling – Regular Expressions –		CO3		
	Object-Oriented Programming		CO4		
			CO5		
III	Functional Programming: Lambda,	12	CO1	K1,K2,K3	
	Iterators, Generators, List		CO2	K4,K5,K6	
	Comprehensions – NumPy Arrays –		CO3		
	Pandas Series – Pandas Dataframes		CO4		
			CO5		
IV	Data Wrangling with Pandas – Querying	12	CO1	K1,K2,K3	
	DataFrames – Merging DataFrames –		CO2	K4,K5,K6	

	Applying Functions to DataFrames –		CO3		
	Aggragations with Pandas and NumPy		005		
	Aggregations with Fandas and Numr y		CO4		
			CO5		
V	Matplotlib package – Pandas.Plotting	12	CO1	K1,K2,K3	
	package: Scatter matrices, Lag Plots,		CO2	K4,K5,K6	
	Autocorrelation Plots, Bootstrap Plots		CO3		
			CO4		
	Seaborn Package: Stripplot, Swarmplot,		CO5		
	Heatmap, Pairplot, Regression Plot –				
	Formatting – Customizing				
	Visualizations				
REFE	REFERENCES:				
	1. Gowrishanker and Veena, "Introduction	n to Python Pro	ogramming	", CRC Press, 2019	
	2. Stefanie Molin, "Data Analysis with Pandas", Packt, 2019				
	3. Joel Grus, "Data Science from scratch"	, O'Reilly, 201	5		
	4. Wes Mc Kinney, "Python for Data Ana	lysis", O'Reill	y Media, 20	012	
	5. Jake Vanderplas, "Python Data Science	Handbook: E	ssential To	ols for Working with Data	
	", 2012				
1.	https://www.python.org/				
2.	https://www.w3schools.com/python/				
1					

3. <u>https://www.tutorialspoint.com/python/index.htm</u>

CourseOutcomes (COs)and Cognitive LevelMapping

	PDS 1504 PYTHON FOR DATA SCIENCE (MC)	COGNITIVE LEVEL
CO1	To understand and apply the Python Programming concepts.	K1,K2
CO2	To apply the functions available in Numpy and Pandas packages	К3
CO3	To illustrate Data Wrangling operations in different contexts.	K4
CO4	To assess the usage of Data Aggregation and Grouping operations.	K5
CO5	To construct Visuals for various real-world problems.	К6

r				
Course Co	de PDS1505			
Course Tit	le PYTHON OR DATA SCIENCE L	μ AB		
Credits	04			
Hours/We	ek 04			
Category	Major Core (MC) – Lab			
Semester	I			
Regulation	2022			
Course Ov	erview			
This obje	s Lab course aims to acquire skills in Pyrect oriented programming, data wrangling	thon Program , data aggrega	ming conce ation, group	epts like data structures, bing operations and data
VISU	anzation techniques.			
Course Ob	jectives	• • • • • •		
	apply OOP concepts in Python to solve a v	ariety of prob	ems	
2.100	perform data wrangling data aggregation	and grouping	operations	28
3. TO	effectively build data visualizations for diff	ferent contexts	sperations	
Prereguisi	tes Basic programming knowledge.		,	
	SYLLA	BUS		
UNIT	CONTENT	HOURS	COs	COGNITIVE
01122				LEVEL
I		12	CO1	K1,K2,K3
	1. Editing and executing Programs		CO2	K4,K5,K6
	involving Flow Controls.		CO3	
	2. Editing and executing Programs		CO4	
	involving Functions.		CO5	
	3. Program in String Manipulations			
11	4. Creating and manipulating a Tuple	12	COI	K1,K2,K3
	5. Creating and manipulating a List		CO2	K4,K5,K6
	6. Creating and manipulating a		CO3	
	Dictionary		CO4	
			CO5	
III	7. Object Creation and Usage	12	CO1	K1,K2,K3
	8. Program involving Inheritance		CO2	K4,K5,K6
	9. Program involving Overloading		CO3	
			CO4	
			CO5	
IV	10. Reading and Writing with Text Files	12	C01	K1.K2.K3

	and Binary Files		CO2	K4,K5,K6
	11.Combining and Merging Data Sets		CO3	
			CO4	
			CO5	
V	12. Program involving Regular	12	CO1	K1,K2,K3
	Expressions		CO2	K4,K5,K6
	13.Data Aggregation and GroupWise		CO3	
	Operations		CO4	
			CO5	
1			1	

REFERENCES:

- 1. Gowrishanker and Veena, "Introduction to Python Programming", CRC Press, 2019
- 2. Stefanie Molin, "Data Analysis with Pandas", Packt, 2019
- 3. Joel Grus, "Data Science from scratch", O'Reilly, 2015
- 4. Wes Mc Kinney, "Python for Data Analysis", O'Reilly Media, 2012
- 5. Jake Vanderplas, "Python Data Science Handbook: Essential Tools for Working with Data", 2012

Website:

- 1. https://www.python.org/
- 2. https://www.w3schools.com/python/
- 3. <u>https://www.tutorialspoint.com/python/index.htm</u>

CourseOutcomes (COs)and Cognitive LevelMapping

	PDS 1505 python for data science (MC)	COGNITIVE LEVEL
CO1	To make use of data structures in Python to represent different types of data	K1, K2
CO2	To apply OOP concepts in Python to solve a variety of problems	
CO3	To develop solutions using the functions in Numpy and Pandas packages	К3
CO4	To perform data wrangling, data aggregation and grouping operations	K4
CO5	To effectively build data visualizations for different contexts	K5

Course Code	PDS1506
Course Title	Machine Learning
Credits	04
Hours/Week	05
Category	Major Core(MC)–Theory
Semester	Ι
Regulation	2022

Course Overview

- 1. This course provides the various types of machine learning algorithms.
- 2. Machine Learning focuses on the development of predictive models that learn automatically
- 3. This course covers complex Machine Learning algorithms used for solving real world problems.
- 4. It enables better decision making, predictive analysis, visualization and pattern discovery.

Course Objectives

- 1. To understand a range of Machine learning algorithms along with their merits and demerits.
- 2. To learn the methodology and apply the machine learning algorithms to real world problems.
- 3. To implement visualization of solutions for effective understanding and decision making.
- 4. To explore the concepts of market basket analysis and recommendation systems.

Prerequisites Basic knowledge in data science algorithms

	SYLLABUS				
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL	
I	Introduction:MachineLearningFoundations–Overview–Design of a LearningSystem–TypesSupervisedLearningLearning–ApplicationsofMachineLearningLearning–ToolsOverview for ML.	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6	
II	Supervised Learning – I:Simple Linear Regression – MultipleLinear Regression – PolynomialRegression – Ridge Regression – LassoRegression – Evaluating RegressionModels – Model Selection – Bagging –Ensemble Methods.	15	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6	
III	Supervised Learning – II: Classification – Logistic Regression –	15	CO1 CO2	K1,K2,K3 K4,K5,K6	

		Decision Tree Regression and		CO3	
		Classification – Random Forest		CO4	
		Regression and Classification – Support		CO5	
		Vector Machine Regression and			
		Classification - Evaluating Classification			
		Models.			
IV		Unsupervised Learning:	15	CO1	K1,K2,K3
		Clustering – K-Means Clustering –		CO2	K4,K5,K6
		Density-Based Clustering –		CO3	
		Dimensionality Reduction – Collaborative		CO4	
		Filtering.		CO5	
V		Association Rule Learning and	15	CO1	K1 K2 K3
		Reinforcement Learning:		CO^2	K4.K5.K6
		Association Rule Learning – Apriori –			
		Eclat – Reinforcement Learning – Upper			
		Confidence Bound – Thompson		C04	
		Sampling – Q-Learning.		05	
Text Books					
	1.	Kevin P. Murphy, "Machine Learning: A Pr	obabilistic Pe	rspective",	MIT Press, 2012.
	2.	Ethem Alpaydin, "Introduction to Machine	Learning", Ml	T Press, Tl	hird Edition, 2014.
	3.	Tom Mitchell, "Machine Learning", McGra	w-Hill, 1997.	,	,
	4.	Sebastian Raschka, Vahid Mirjilili," Python	Machine Lea	rning and d	leep learning", 2 nd
		edition, kindle book, 2018		U	
	5.	Carol Quadros," Machine Learning with py	thon, scikit-lea	arn and Ter	nsorflow", Packet
		Publishing, 2018	,		
	6.	Gavin Hackeling," Machine Learning with s	scikit-learn", F	acket publ	ishing, O'Reily,
		2018		*	
	7.	Stanford Lectures of Prof. Andrew Ng on M	Iachine Learni	ng	
	0		1 N 1 1 T		. 2007

8. Christopher Bishop, "Pattern Recognition and Machine Learning" Springer, 2007.

Suggested Readings

- 1. Samir Madhavan, 2016. Mastering Python for Data Science, PACKT Publishing.
- 2. Ethem Alpaydin, 2009. Introduction to Machine Learning, The MIT Press.
- 3. Jake VanderPlas, 2016. Python Data Science Handbook, O'REILLY.
- 4. Stanford Lectures of Prof. Andrew Ng.
- 5. NPTEL Lectures of Prof. B.Ravindra

Web Resources

- 1. https://data-flair.training/blogs/machine-learning-tutorial/
- 2. <u>https://www.packtpub.com/application-development/complete-machine-learning-course-python-video</u>
- 3. https://www.geeksforgeeks.org/machine-learning/

CourseOutcomes (COs)and Cognitive LevelMapping

	PDS 1506 MACHINE LEARNING(MC)	COGNITIVE
		LEVEL
CO1	To understand the concepts of Machine learning.	K1,K2
CO2	To understand and distinguish Supervised, Unsupervised and	К3
	Remorcement Learning.	
CO3	To apply Supervised, Unsupervised and semi supervised algorithms for a specific problem	K4
CO4	To compare the performance of various machine learning techniques for real world problems	K5
CO5	To propose solutions for real world problems using huge volume of data.	K6

Course Code	PDS 1507	
Course Title	Machine Learning Lab	
Credits	04	
Hours/Week	04	
Category	Major Core(MC)-Lab	
Semester	Ι	
Regulation	2022	
Course Overview		

Course Overview

- 1. This course helps to understand a wide variety of machine learning algorithms
- 2. It helps to understand how to evaluate models generated from data
- 3. Machine learning techniques enable us to automatically extract features from data so as to solve predictive tasks, such as speech recognition, object recognition, machine translation
- 4. This course helps to design and implement various machine learning algorithms in a range of real-world application.

Course Objectives

- 1. To be able to formulate machine learning problems agreeing to different applications
- 2. To understand a variety of machine learning algorithms along with their strengths and weaknesses
- 3. To be able to apply machine learning algorithms to solve problems of moderate complexity
- 4. To apply the algorithms to a real-world problem, enhance the models learned and report on the expected accuracy that can be achieved by applying the model.
 Prorequisites Basic Knowledge in Programming

1 Tel equisites		Dasie Knowledge in Flogramming			
	SYLLABUS				
UNIT	CONTENT		HOURS	COs	COGNITIVE
					LEVEL
Ι		1. Simple and Multiple Linear	12	CO1	K1,K2,K3
		Regression		CO2	K4,K5,K6
				CO3	
				CO4	
		2. Polynomial Regression		CO5	
Π		3. Bagging Technique	10	CO1	K1,K2,K3
				CO2	K4,K5,K6
		4. Adaboost Methods		CO3	
				CO4	
				CO5	
III		5. Logistic Regression algorithm	12	CO1	K1,K2,K3
				CO2	K4,K5,K6
		6. Decision Tree Classification		CO3	

			CO4	
	7. Random Forest Classification		CO5	
IV	8. SVM Classification	13	CO1	K1,K2,K3
			CO2	K4,K5,K6
	9. K Means Clustering		CO3	
			CO4	
	10. Density based Clustering		CO5	
V	11. Apriori algorithm for market	13	CO1	K1,K2,K3
	basket analysis		CO2	K4,K5,K6
			CO3	
	12. Comparison of Supervised		CO4	
	Machine Learning algorithms		CO5	
Text Book	s			
1.	1. Aurelien Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and			
	TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (First			
	Edition)-O'Reilly Media			
2.	John Paul Mueller and Luca Massaron, Machine Learning (in Python and R) For			
2	Dummies (1st Edition).	uning for Had	roma, Casa S	Studios and
5.	Algorithms to Get You Started (1st Edition)			
Suggested				
1.	1. Ethem Alpaydin, Machine Learning: The New AI (The MIT Press Essential			
	Knowledge Series)			
2.	John D. Kelleher, Brian Mac Namee, and A	oife D'Arcy, "	Fundamen	tals of Machine
	Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case			
	Studies.			
3.	Andriy Burkov, The Hundred-Page Machine Learning Book.			
4.	Valliappa Lakshmanan, Machine Learning Design Patterns: Solutions to Common			
W.L.D.	Challenges in Data Preparation, Model Bui	lding, and ML	Ops	
Web Reso	https://www.hingloomingeneostern.com/www.hi	na laguning in	we with one set of	her story /
1.	https://machinelearningmastery.com/machine.la	orning with r	-python-ste	<u>ep-by-step/</u>
2.	https://www.tutomaspoint.com/machine_le	arning_witti_p	-nython_int	roduction/
5.	mps.//pymonprogramming.net/macmile-iea	uning-tutonal	pymon-iii	

CourseOutcomes (COs)and Cognitive LevelMapping

	PDS 1507MACHINE LEARNING LAB(MC)	COGNITIVE
		LEVEL
CO1	Apply structured thinking to unstructured problems	K1,K2
CO2	Understand a very broad collection of machine learning algorithms and problems	K3
CO3	Learn algorithmic topics of machine learning and mathematically deep enough to introduce the required theory	K4
CO4	Learn to apply accuracy metrics for various models	K5
CO5	Develop an appreciation for what is involved in learning models from data.	K6

Semester II

COURSE DESCRIPTION

Course Code	PDS2501
Course Title	STATISTICAL INFERENCE
Credits	3
Hours/Week	4
Category	MC
Semester	II
Regulation	2022

Course Overview:

- 1. Able to understand and apply basic concepts of Statistical Inference.
- 2. Able to understand and apply important results such as NP Lemma and LR test.
- 3. Enable to easily derive conclusions from Large Samples.
- 4. Can understand the concepts related to Small Sample tests.
- 5. Enable to identify problematic situations and apply Non-parametric Tests.

Course Objectives:

- 1. To study basic concepts of Statistical Inference.
- 2. To apply important results such as NP Lemma and LR test.
- 3. To study Large Sample Tests and Small Sample tests.
- 4. To identify problematic situations and apply Non-parametric Tests.

Pre requisites: Basic understanding of Statistics

	SYLLABUS			
U	CONTENT	HRS	COs	COG NITI VE
				LEVE
				L
Ι	Testing of Hypothesis - Statistical Hypothesis - Simple and	14	CO1	K1
	composite hypothesis, Null and Alternative hypothesis - two		CO2	K2
	kinds of errors, level of significance, size and power of a		CO3	K3
	test most powerful test, Neyman-Pearson lemma with proof.		CO4	K4
			CO5	K5
				K6

II	Simple examples using Neyman Pearson lemma.	15	CO1	K1
	Uniformly most powerful tests and biased tests based on		CO2	K2
	normal Likelihoodratiotest(withoutproof)and its		CO3	K3
	properties. Application of LR test for single mean.		CO4	K4
			CO5	K5
				K6
III	Testofsignificanceformean(s),variance(s),proportion	15	CO1	K1
	(s),correlationcoefficient(s)basedon Normal		CO2	K2
	distribution.		CO3	K3
			CO4	K4
			CO5	K5
				K6
IV	Test of significance for mean(s), variance(s), correlation	15	CO1	K1
	coefficient(s), regression coefficient, based on t, Chi-square		CO2	K2
	and F-distributions. Applications of Chi-square in test of		CO3	K3
	significance(independence of attributes, goodness off it)		CO4	K4
	ANOVA-One way Classification-Two way Classification-		CO5	K5
	CRD-RBD-LSD.			K6
V	Non-parametric tests – Kolmogorov -Smirnov test, Sign test,	15	CO1	K1
	Wald- Wolfowitz run test, runtestfor randomness, median		CO2	K2
	test, Wilcoxontest and Wilcoxon – Mann-WhitneyUtest.		CO3	K3
			CO4	K4
			CO5	K5
				K6

REFERENCES:

1. Gupta,S.C.andKapoor,V.K.:"FundamentalsofMathematicalStatistics",Sultan&Chand&Sons, NewDelhi,11th Ed, 2002.

2. Rohatgi, V.K.: "Statistical Inference", John Wileyand sons, 1984.

3. Hogg,R.V,Craig.A.T.andTannis:"Introductiontomathematicalstatistics",PrenticeHall,England , 1995.

4. Dudewicz.E.JandMishra.S.N.: "ModernMathematicalstatistics", JohnWileyandsons, 1988.

Website:

- 1.https://www.udemy.com/tutorial/python-for-statistical-analysis/hypotesis-introduction/
- 3. https://www.coursera.org/lecture/inferential-statistics-intro/the-chi-square-independence-test-
- 4. LEIm3
- 5. <u>https://www.youtube.com/watch?v=RgKy7URFx1c</u>

Course Outcomes (COs) and Cognitive Level Mapping

PDS150	PDS1502 - STATISTICS FOR COMPUTER SCIENCE(IDE)	
CO1	Definitions and Concepts of Statistical Inference	K1,K2
CO2	Interpretations and applications of Important results, such as	K3
	NP Lemma and LR test	
CO3	Concepts of Large sample Tests	K4
CO4	Concepts of Small Sample Tests	K5
C05	Identification and application of suitable non-parametric test	K6
	for a given problem situation	

Course Code	PDS 2502
Course Title	BIG DATA ANALYTICS THROUGH SPARK
Credits	03
Hours/Week	04
Category	Major Core(MC)–Theory
Semester	П
Regulation	2022

Course Overview

- 1. Understand the Big Data Platform and its Use cases
- 2. Provide Concepts and Interfacing with HDFS and Map Reduce
- 3. Provide hands on Spark programming and Eco System
- 4. Apply spark analytics on Structured, Unstructured Data.
- 5. Exposure to Data Analytics with Machine Learning Algorithm using Spark

Course Objectives

- 1. To develop dynamic RDD spark programming using Different dataset.
- 2. To perform Big Data analytics using Spark.
- 3. To effectively build Model using Machine Learning Algorithms to analysis in Big data

Prerequisites Basic programming knowledge.

SYLLABUS				
UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Unit I: Introduction to Big Data and	12	CO1	K1,K2,K3
	Hadoop		CO2	K4,K5,K6
	Big Data and its importance – Sources of		CO3	
	Big Data – Characteristics of Big Data –		CO4	
	Big Data Analytics – Big Data		CO5	
	Applications, Hadoop Distributed File			
	System – Map Reduce Paradigm- Hadoop			
	Ecosystem			
II	Unit II: Spark Programming with	12	CO1	K1,K2,K3
	Python		CO2	K4,K5,K6
	Apache Spark Ecosystem - Resilient		CO3	
	Distributed Datasets – Spark Architecture		CO4	
	-Loading and Storing Data –		CO5	
	Transformations – Actions – Key-Value			
	Resilient Distributed Datasets – Local			
	Variables – Broadcast Variables –			
	Accumulators – Partitioning – Persistence.			
III	Unit III: Spark SQL	12	CO1	K1,K2,K3
-----------	--	-----------------	--------------	-------------------
	Overview of Spark SQL – Spark Session		CO2	K4,K5,K6
	– Data Frames – Schema of a Data Frame		CO3	
	- Operations supported by Data Frames -		CO4	
	Filter, Join, GroupBy, Agg operations -		CO5	
	Nesting the Operations – Temporary			
	Tables – Viewing and Querying			
	Temporary Tables.			
IV	Unit IV: Spark Streaming	12	CO1	K1,K2,K3
	Use Cases for Real time Analytics -		CO2	K4,K5,K6
	Transferring, Summarizing, Analysing		CO3	
	Real time data – Data Sources supported		CO4	
	by Spark Streaming – Flat files, TCP/IP –		CO5	
	Flume – Kafka – Kinesis – Streaming			
	Context –D DStreams operations.			
V	Unit V: Machine Learning with Spark	12	CO1	K1,K2,K3
	Linear Regression – Decision Tree		CO2	K4,K5,K6
	Classification – Principal Component		CO3	
	Analysis – Random Forest Classification		CO4	
	– Text Pre-processing with TF-IDF –		CO5	
	Naïve Bayes Classification – K-Means			
	Clustering – Recommendation Engines.			
Text Bool	ζS			
1.	Michael Berthold, David J. Hand, "Intelliger	nt Data Analys	sis", Spring	ger, 2007. 2. Tom
2.	White "Hadoop: The Definitive Guide" Thi	rd Edition, O"	reilly Med	ia, 2011
3.	Tomasz Drabos, "Learning PySpark", PACI	КТ, 2017.		
Suggested	Readings			
1.	Padma Priya Chitturi, "Apache Spark for Da	ata Science", P	ACKT, 20	17.
2.	Holden Karau, "Learning Spark". PACKT,	2016.		
3.	Sandy Riza, "Advanced Analytics with Span	k", O' Reilly,	2016.	
4.	Romeo Kienzler, "Mastering Apache Spark"	', PACKT, 20	17.	
Web Reso	ources			
1	. https://spark.apache.org/			
2.	https://databricks.com/			

CourseOutcomes (COs)and Cognitive LevelMapping

PD	S 2502 BIG DATA ANALYTICS THROUGH SPARK (MC)	COGNITIVE
		LEVEL
CO1	To remember and understand the SPARK Programming concepts.	K1,K2
CO2	To apply Algorithm constructs to implement RDD concept.	К3
CO3	To illustrate Spark SQL and Temp table operations.	K4
CO4	To assess Spark Streaming operations through different method.	K5
CO5	To construct solutions to resolve various real-world problems.	К6

Course Code	PDS2503
Course Title	BIG DATA ANALYTICS THROUGH SPARK - LAB
Credits	03
Hours/Week	04
Category	Major Core (MC) – Lab
Semester	II
Regulation	2022

• This Lab course aims to acquire skills in Big Data Analytics Through Spark concepts like creating RDD, various RDD operations, Spark with SQL, Spark Streaming, and spark with Machine Learning

Course Objectives

- 1. To apply RDD concepts to solve the real-world problems
- 2. To develop dynamic RDD spark programming using Different dataset.
- 3. To perform analysis in Big data using various Methods
- 4. To effectively build Model using Machine learning Algorithms to analysis in big data

Prerequisites Basic programming knowledge.

	SYLLABUS						
UNIT		CONTENT	HOURS	COs	COGNITIVE		
					LEVEL		
Ι	1.	Program involving Resilient	12	CO1	K1,K2,K3		
		Distributed Datasets		CO2	K4,K5,K6		
	2.	Program involving Transformations		CO3			
		and Actions		CO4			
	3.	Program involving Key-Value		CO5			
		Resilient Distributed Datasets					
II	4.	Program involving Local Variables,	12	CO1	K1,K2,K3		
		Broadcast Variables and		CO2	K4,K5,K6		
		Accumulators		CO3			
	5.	Program involving Filter, Join,		CO4			
		GroupBy, Agg operations		CO5			
	6.	Viewing and Querying Temporary					
		Tables					
III	7.	Transferring, Summarizing and	12	CO1	K1,K2,K3		
		Analysing Twitter data		CO2	K4,K5,K6		
	8.	Program involving Flume, Kafka		CO3			
		and Kinesis		CO4			
	9.	Program involving DStreams and		CO5			
		Dstream RDDs					

IV	10. Linear Regression	12	CO1	K1,K2,K3		
	11. Decision Tree Classification		CO2	K4,K5,K6		
	12. Principal Component Analysis		CO3			
			CO4			
			CO5			
V	13. Random Forest Classification	12	CO1	K1,K2,K3		
	14. Text Pre-processing with TF-IDF		CO2	K4,K5,K6		
	15. Naïve Bayes Classification		CO3			
	16. K-Means Clustering		CO4			
			CO5			
Text	Books					
1.	Michael Berthold, David J. Hand, "Intelligent I	Data Analysis'	, Springer,	2007. 2. Tom		
2.	2. White "Hadoop: The Definitive Guide" Third Edition, O'reilly Media, 2011					
3.	3. Tomasz Drabos, "Learning PySpark", PACKT, 2017.					
Sugg	ested Readings					
	1. Padma Priya Chitturi, "Apache Spark fo	or Data Scienc	e", PACK7	7, 2017.		
	2. Holden Karau, "Learning Spark". PACKT	, 2016.				
	3. Sandy Riza, "Advanced Analytics with Spa	ark", O' Reill	y, 2016.			
	4. Romeo Kienzler, "Mastering Apache Spart	k", PACKT, 2	017.			
Web	Resources					
	1. <u>https://spark.apache.org/</u>					
	2. https://databricks.com/					

Course Outcomes (COs)and Cognitive Level Mapping

PD	S 2504 BIG DATA ANALYTICS THROUGH SPARK (MC)	COGNITIVE LEVEL
CO1	To remember and understand the RDD operation concepts.	COGNITIVE LEVEL
CO2	To remember and understand the RDD operation concepts.	K1, K2
CO3	To apply Algorithm to implement spark SQL concept.	K3
CO4	To illustrate Spark SQL and Temp table operations.	K4
CO5	To assess Spark Streaming operations through different machine Learning Algorithms.	K5

Course Code	PDS 2504
Course Title	NoSQL DATABASES
Credits	03
Hours/Week	04
Category	Major Core (MC) – Theory
Semester	II
Regulation	2022

• NoSQL database course introduction, overview NoSQL databases (non-relational databases). The four types of NoSQL databases (e.g. Document-oriented, Key-Value Pair, Column-oriented and Graph) will be explored in detail

Course Objectives

- 1. Knowledge on SQL query language.
- 2. Knowledge on MongoDB query language.
- 3. Ability to comprehend the principles of NoSQL.
- 4. Understand the difference of NoSQL key value and Document database
- 5. Understand the Column database and data modeling technique

Prerequisites: Basic Big Data knowledge.

	SYLLABUS			
UNI	CONTENT	HOURS	COs	COGNITIVE
Т				LEVEL
Ι	Introduction of Relational Data Base	12	CO1	K1,K2,K3
				K4,K5,K6
	Creating a table Inserting, deleting, alter, Updating			
	Select command , Where clause, Aggregate			
	functions, Numeric functions, Constraints, keys,			
	Group By, Having, Sub Queries, Alias, Joins,			
	Operators, String Functions, Normalization.			
II	Introduction of NO SQL	12	CO2	K1,K2,K3
			CO3	K4,K5,K6
	Overview and History of NoSQL Databases.		CO4	
	Definition of the Four Types of NoSQL Database,		CO5	
	The Value of Relational Databases, Getting at			
	Persistent Data, Concurrency, Integration,			
	Impedance Mismatch, Application and Integration			
	Databases, Attack of the Clusters, The Emergence			
	of NoSQL, Key Points Comparison of relational			
	databases to new NoSQL stores, Mongo DB,			

	Cassandra, HBASE, Neo4j use and deployment,			
	Application, RDBMS approach, Challenges			
	NoSQL approach, Key-Value and Document Data			
	Models, Column-Family Stores, Aggregate-			
	Oriented Databases. sharding, MapReduce on			
	databases. Distribution Models, Single Server,			
	Sharding, Master-Slave Replication, Peer-to-Peer			
	replication, Combining Sharding and Replication .			
III	KEY VALUE DATA STORES	12	CO2	K1,K2,K3
			CO3	K4,K5,K6
	NoSQL Key/Value databases using MongoDB,		CO4	
	Document Databases, Document oriented		CO5	
	Database Features, Consistency, Transactions,			
	Availability, Query Features, Scaling, Suitable			
	Use Cases, Event Logging, Content Management			
	Systems, Blogging Platforms, Web Analytics or			
	Real-Time Analytics, E-Commerce Applications,			
	Complex Transactions Spanning Different			
	Operations, Queries against Varying Aggregate			
	Structure.			
IV	DOCUMENT ORIENTED DATABASE	12		K1,K2,K3
IV	DOCUMENT ORIENTED DATABASE	12	CO2	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASE Column- oriented NoSQL databases using Apache	12	CO2 CO3	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASE Column- oriented NoSQL databases using Apache HBASE, Column-oriented NoSQL databases	12	CO2 CO3 CO4	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASE Column- oriented NoSQL databases using Apache HBASE, Column-oriented NoSQL databases using Apache Cassandra, Architecture of HBASE,	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using ApacheHBASE, Column-oriented NoSQL databasesusing Apache Cassandra, Architecture of HBASE,Column-Family Data Store Features, Consistency,	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using ApacheHBASE, Column-oriented NoSQL databasesusing Apache Cassandra, Architecture of HBASE,Column-Family Data Store Features, Consistency,Transactions, Availability, Query Features,	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASE Column- oriented NoSQL databases using Apache HBASE, Column-oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging,	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASE Column- oriented NoSQL databases using Apache HBASE, Column-oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6
IV	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using ApacheHBASE, Column-oriented NoSQL databasesusing Apache Cassandra, Architecture of HBASE,Column-Family Data Store Features, Consistency,Transactions, Availability, Query Features,Scaling, Suitable Use Cases, Event Logging,Content Management Systems, BloggingPlatforms, Counters, Expiring Usage.DATA MODELING WITH GRAPH	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6 K1,K2,K3
IV V	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.DATA MODELING WITH GRAPH	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6 K1,K2,K3 K4,K5,K6
IV V	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.DATA MODELING WITH GRAPHComparison of Relational and Graph Modeling,	12	CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6 K1,K2,K3 K4,K5,K6
IV V	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.DATA MODELING WITH GRAPHComparison of Relational and Graph Modeling, Property Graph Model Graph Analytics: Link	12	CO2 CO3 CO4 CO5 CO2 CO3 CO4	K1,K2,K3 K4,K5,K6 K1,K2,K3 K4,K5,K6
IV V	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.DATA MODELING WITH GRAPHComparison of Relational and Graph Modeling, Property Graph Model Graph Analytics: Link analysis algorithm- Web as a graph, Page Rank-	12	CO2 CO3 CO4 CO5 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6 K1,K2,K3 K4,K5,K6
IV V	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.DATA MODELING WITH GRAPHComparison of Relational and Graph Modeling, Property Graph Model Graph Analytics: Link analysis algorithm- Web as a graph, Page Rank- Markov chain, page rank computation, Topic	12	CO2 CO3 CO4 CO5 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6 K1,K2,K3 K4,K5,K6
IV V	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.DATA MODELING WITH GRAPHComparison of Relational and Graph Modeling, Property Graph Model Graph Analytics: Link analysis algorithm- Web as a graph, Page Rank- Markov chain, page rank computation, Topic specific page rank Page Ranking Computation	12	CO2 CO3 CO4 CO5 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6 K1,K2,K3 K4,K5,K6
IV V	DOCUMENT ORIENTED DATABASEColumn- oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, Column-Family Data Store Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage.DATA MODELING WITH GRAPHComparison of Relational and Graph Modeling, Property Graph Model Graph Analytics: Link analysis algorithm- Web as a graph, Page Rank- Markov chain, page rank computation, Topic specific page rank Page Ranking Computation techniques iterative processing, Random walk	12	CO2 CO3 CO4 CO5 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6 K1,K2,K3 K4,K5,K6

Text Books

1. Sadalage, P. & Fowler,NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence, Wiley Publications,1st Edition,2022.

Suggested Readings

- 1. Christopher D.manning, Prabhakar Raghavan, Hinrich Schutze, An introduction to Information Retrieval, Cambridge University Press
- 2. Daniel Abadi, Peter Boncz and Stavros Harizopoulas, The Design and Implementation of Modern Column-Oriented Database Systems, Now Publishers.
- 3. Guy Harrison, Next Generation Database: NoSQL and big data, Apress.

Web Resources

- 1. https://www.oracle.com/in/database/nosql/technologies/nosql/
- 2. https://www.coursera.org/lecture/nosql-databases/introduction-to-nosql-VdRNp
- 3. https://www.geeksforgeeks.org/introduction-to-nosql/
- 4. <u>https://www.javatpoint.com/nosql-database</u>

Course Outcomes (COs)and Cognitive Level Mapping

	PDS2504- NoSQL DATABASES (MC)		COGNITIVE
			LEVEL
CO1	To remember and understand the SQL concepts.	K1,K2,K3	
CO2	To apply objects, load data, query data and performance	K1,K2,K3	
	tune Column-oriented NoSQL databases.		
CO3	To illustrate NoSQL database operations.	K3,k4	
CO4	To assess concept such as Cassandra, Hadoop Hbase,	K5	
	MongoDB, Neo4J		
CO5	To construct solutions to resolve various real-world	K6	
	problems.		

Course Code	PDS2505
Course Title	NoSQL DATABASES – LAB
Credits	03
Hours/Week	04
Category	Major Core (MC) – Lab
Semester	II
Regulation	2022

- 1. Knowledge on MongoDB query language.
- 2. Ability to comprehend the principles of NoSQL.
- 3. Understand the difference of NoSQL key value database and Document database
- 4. Know the concept of Column database
- 5. Understand the data modelling technique

Course Objectives

- 1. Demonstrate competency in designing NoSQL database management systems.
- 2.Demonstrate competency in describing how NoSQL databases differ from relational databases from a theoretical perspective
- 3. Demonstrate competency in selecting a particular NoSQL database for specific use cases.

UNIT		CONTENT	HUIDS	C	
		SYLLAB	US		
Prerequisit	es Basic SQ	Basic SQL and Big Data knowledge.			

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	1. Query to create and drop database.	12	CO1	K1,K2,K3
	2.Query to create, display and drop		CO2	K4,K5,K6
	collection		CO3	
	3.Query to insert, query, update and		CO4	
	delete a document		CO5	
Π	4.Key-value databases	12	CO1	K1,K2,K3
	5.Implement with column-family stores		CO2	K4,K5,K6
	(cassandra)		CO3	
	6.Graph databases (neo4j)		CO4	
			CO5	
III	7.Aggregate function	12	CO1	K1,K2,K3
	8 .Push and addtoset expression.		CO2	K4,K5,K6
	9. First and last expression.		CO3	
			CO4	
			CO5	
IV	10.Replica of existing database	12	CO1	K1,K2,K3

	11.Backup of existing database		CO2	K4,K5,K6	
			CO3		
			CO4		
			CO5		
V	12. Restore database from the backup	12	CO1	K1,K2,K3	
	13.Connecting python with mongodb and		CO2	K4,K5,K6	
	inserting, retrieving, updating and		CO3		
	deleting.		CO4		
			CO5		
Text Boo	ks			•	
1. Prac	ctical mongodb by "shakuntala gupta edward	l navin sabh	arwal publis	herapress	
2. No	2. Nosql distilled by pramod sadalge, martin fowler				
3. Nos	3. Nosql for dummies by a willy Brand				
Suggested Readings					
4. Chr	4. Christopher D.manning, Prabhakar Raghavan, Hinrich Schutze, An introduction to Information				
Ret	Retrieval, Cambridge University Press				
5. Dan	Daniel Abadi, Peter Boncz and Stavros Harizopoulas, The Design and Implementation of				
Mo	dern Column-Oriented Database Systems, N	ow Publishe	ers.		
6. Guy	6. Guy Harrison, Next Generation Database: NoSQL and big data, Apress.				
Web Res	Durces				
1. http	1. https://www.oracle.com/in/database/nosql/technologies/nosql/				
2. http	2. https://www.coursera.org/lecture/nosql-databases/introduction-to-nosql-VdRNp				
3. http	https://www.geeksforgeeks.org/introduction-to-nosql/				

4. <u>https://www.javatpoint.com/nosql-database</u>

Course Outcomes (COs)and Cognitive Level Mapping

	PDS2505- NoSQL DATABASES LAB (MC)	COGNITIVE
		LEVEL
CO1	To remember and understand the No SQL Basic Query.	K1,K2
CO2	To apply objects, load data, query data and performance tune	К3
	Column-oriented NoSQL databases in Data Set.	
CO3	To illustrate NoSQL database Operations with Big Data.	K4
CO4	To assess concept such as Cassandra, Hadoop Hbase, MongoDB,	K5
	Neo4J using Various Data set.	
CO5	To construct solutions to resolve various real-world problems.	K6

Course Code	PDS2601
Course Title	MARKETING ANALYTICS
Credits	2
Hours/Week	4
Category	ME
Semester	II
Regulation	2022

- 1. Analyse the various types of marketing data
- 2. Assess the quality of marketing data and make appropriate interpretations of meaning according to data sources and intended uses.
- 3. Compare and contrast common data models used in marketing data systems.
- 4. Able to identify social media platforms for forming Marketing strategies
- 5. Identify Web resources for forming effective Marketing strategies

COURSE OBJECTIVES:

- 1. Recognize challenges in dealing with data sets in marketing.
- 2. Identify and apply appropriate algorithms for analyzing the social media and web data
- 3. Make choices for a model for new machine learning tasks.

Pre requisites: Basic knowledge in Statistics and Data analysis

	SYLLABUS					
UNIT	CONTENT	HRS	Cos	COGNITIVE		
				LEVEL		
Ι	Marketing Analytics Basics	8	CO1	K1		
	Introduction, Data for Marketing Analytics,		CO2	K2		
	Business Intelligence, Analytics, and Data		CO3	K3		
	Science, Exploratory Data Analysis,		CO4	K4		
	Descriptive Analysis, Predictive Analytics,		CO5	K5		
	Prescriptive Analytics. Price Analytics -			K6		
	Goals, Bunding, Skimming, Promotions,					
	Discounting					
II	Customer Analytics	14	CO1	K1		
	Segmentation- Introduction, Benefit of		CO2	K2		
	Customer Analytics, Factors Essential,		CO3	K3		
	Segmentation Analytics, Cluster Analysis.		CO4	K4		
	Nurturing Customers - Metrics for Tracking		CO5	K5		
	Customer Experience, Logistic Regression			K6		
	Analysis, Use of Logistic Regression as a					

	Classification Technique. Customer			
	Analytics -Customer Lifetime Value, Churn			
	Analytics			
III	Digital Marketing Analytics	14	CO1	K1
	Traditional Vs Digital Marketing, Strategies,		CO2	K2
	Advertising: Concept of Display Advertising,		CO3	K3
	Display Ads, Buying Models - Cost per		CO4	K4
	Click, Milli, Lead, Acquisition, Fixed Cost.		CO5	K5
	Social Media Marketing: How to build a			K6
	successful business strategy.			
IV	Social Media Analytics	12	CO1	K1
	Facebook for Business - Ad Campaign -		CO2	K2
	Adverts - Facebook insights - groups -		CO3	K3
	hashtags - apps. Case Study: Tata Docomo.		CO4	K4
	How Twitter building blocks - How is it		CO5	K5
	different - Twitter Usage - Ads - Analytics			K6
	and Twitter Tools.			
V	Web Analytics	12	CO1	K1
	Web Logs- Javascript tags- Making web		CO2	K2
	analytics actionable- Multi channel		CO3	K3
	attribution- Types of Tracking Codes-Google		CO4	K4
	Analytics Code - Ad words conversion code		CO5	K5
	- Mobile and Universal Analytics			K6

TEXT BOOKS

- 1. Marketing Analytics, Seema Gupta and Avadoot Jather, Wiley, 2021
- 2. Digital Marketing, Seema Gupta, McGrawHill(India), 2018
- 3. Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World, Chuck Hemann & Ken Burbary, Pearson, ISBN 9780789750303
- 4. Matthew Ganis, Avinash Kohirkar. Social Media Analytics: Techniques and Insights for Extracting Business Value Out of Social Media. Pearson 2016.
- 5. Jim Sterne. Social Media Metrics: How to Measure and Optimize Your Marketing Investment. Wiley, 2020.
- 6. Marshall Sponder. Social Media Analytics. McGraw Hill Latest edition.

REFERENCE BOOKS

- 1. Marketing Analytics: A practical guide to real marketing science, Mike Grigsby, Kogen Page, ISBN 9780749474171
- 2. Marketing Metrices 3e, Bendle, Farris, Pferfery, Reibstein,
- 3. Cutting Edge Marketing Analytics: Real World Cases and Data Sets for Hands on Learning, Raj Kumar Venkatesan, Paul Farris, Ronald T. Wilcox.

PDS1501-IN	PDS1501-INTRODUCTION TO DATA SCIENCE (MC)		
CO1	Understanding concepts Marketing Analytics	K1, K2	
CO2	Understanding concepts Marketing Analytics	К3	
CO3	Understanding concepts Customer Analytics	K4	
CO4	Understanding concepts Facebook Analytics	K5	
C05	Understanding concepts Web Analytics	K6	

Course Outcomes (Cos) and Cognitive Level Mapping

Course Code	PDS2602	
Course Title	HEALTH ANALYTICS	
Credits	2	
Hours/Week	4	
Category	ME	
Semester	П	
Regulation	2022	
Course Overview:		
Analyse the various	s types and sources of healthcare data, including clinical, operational,	
claims, and patient	generated data.	
Assess the quality of	of healthcare data and make appropriate interpretations of meaning	
according to data so	purces and intended uses.	
Compare and contrast common data models used in healthcare data systems.		
Able to identify con	mmon measures used in healthcare data analysis for predictive models.	
Identify approaches	s for precision medicine and treatments for personalised services.	
Course Objective:		
To understand the b	basic sources of healthcare data.	
To perform image a	analysis and sensor data analysis.	
To derive and evalu	To derive and evaluate data mining and analysis from social media.	
To frame advanced	data analytic models through visual analytics.	
To identify fraud de	etection in healthcare from different sources of data.	
Pre requisites : Basic know	owledge in Statistics and Data analysis	

Pre requisites :	Basic knowledge in Statistics and Data analysis	5
------------------	---	---

	SYLLABUS				
UNIT	CONTENT	HRS	COs	COGNITIVE	
				LEVEL	
Ι	Introduction to Healthcare Data Analytics-	8	CO1	K1	
	Electronic Health Records- Components of		CO2	K2	
	EHR- Coding Systems- Benefits of EHR-		CO3	K3	
	Barrier to Adopting HER Challenges-		CO4	K4	
	Phenotyping Algorithms.		CO5	K5	
				K6	
II	Biomedical Image Analysis- Mining of Sensor	14	CO1	K1	
	Data in Healthcare- Biomedical Signal Analysis-		CO2	K2	
	Genomic Data Analysis for Personalized		CO3	K3	
	Medicine.		CO4	K4	
			CO5	K5	
				K6	

III	Natural Language Processing and Data Mining	14	CO1	K1
	for Clinical Text- Mining the Biomedical Social		CO2	K2
	Media Analytics for Healthcare.		CO3	K3
			CO4	K4
			CO5	K5
				K6
IV	Advanced Data Analytics for Healthcare-	12	CO1	K1
	Review of Clinical Prediction Models- Temporal		CO2	K2
	Data Mining for Healthcare Data- Visual		CO3	K3
	Analytics for Healthcare- Predictive 53 Models		CO4	K4
	for Integrating Clinical and Genomic Data-		CO5	K5
	Information Retrieval for Healthcare- Data			K6
	Publishing Methods in Healthcare.			
V	Applications and Practical Systems for	12	CO1	K1
	Healthcare– Data Analytics for Pervasive		CO2	K2
	Health- Fraud Detection in Healthcare- Data		CO3	K3
	Analytics for Pharmaceutical Discoveries-		CO4	K4
	Clinical Decision Support Systems- Computer-		CO5	K5
	Assisted Medical Image Analysis Systems-			K6
	Mobile Imaging and Analytics for Biomedical			
	Data.			

TEXT BOOKS:

- 1. Chandan K. Reddy and Charu C Aggarwal, "Healthcare data analytics", Taylor & Francis, 2015.
- 2. Ross M.Muller and Edward M.Rafalski, "Healthcare Analytics", T&F/Routledge, 2020.
- 3. Chandan K.Reddy, "Healthcare Data Analytics", CRC Press, 2020.
- 4. Vikas Kumar, "Healthcare Analytics made simple", Packt, 2020.

SUGGESTED READINGS:

- 1. Hui Yang and Eva K. Lee, "Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, Wiley, 2016.
- 2. Tim O'reilly, "How data science is transforming Healthcare", O'reilly, 2022.
- 3. Laura B. Madsen, "Data driven healthcare", Wiley, 2022.
- 4. Jason Burke, "Health Analytics", Wiley, 2020.

PDS1501-INT	PDS1501-INTRODUCTION TO DATA SCIENCE (MC)	
CO1	Understanding data sources and concepts	K1, K2
CO2	Image analysis and genomic studies	К3
CO3	NLP techniques in healthcare data from social media	K4
CO4	Predictive and prescriptive models of healthcare data	K5
C05	Fraud detection in healthcare and Assistive image analysis system	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	PDS2506
Course Title	RESEARCH METHODOLOGY`
Credits	03
Hours/Week	03
Category	Major Core (MC) – Theory
Semester	II
Regulation	2022

This methodology achieving competence and proficiency in the theory of and practice to research. This fundamental objective can be realized through helping these students to develop the subject of their research, encourage the formation of higher level of trained intellectual ability, critical analysis, rigour, and independence of thought, foster individual judgment, and skill in the application of research theory and methods, and develop skills required in writing research proposals, reports, and dissertation

Course Objectives

Prerequisites

No prerequisites

These methodologies include, but are not limited to, experimental, survey and content analysis. Class discussions and instructor lectures Examination and will be able to describe basic approaches to qualitative research. and identify and critique articles based on different research methods and to the know the data visualization

SYLLABUS				
CONTENT	HOURS	COs	COGNITIVE	
			LEVEL	
Motivation and objectives – Research methods vs.	9	CO1	K1,K2,K3	
Methodology. Types of research – Descriptive vs.		CO2	K4,K5,K6	
Analytical, Applied vs. Fundamental, Quantitative		CO3		
vs. Qualitative, Conceptual vs. Empirical, concept		CO4		
of applied and basic research process, criteria of		CO5		
good research.				
Defining and formulating the research problem,	9	CO1	K1,K2,K3	
selecting the problem, necessity of defining the		CO2	K4,K5,K6	
problem, importance of literature review in		CO3		
defining a problem, literature review-primary and		CO4		
secondary sources, reviews, monograph, patents,		CO5		
research databases, web as a source, searching the				
web, critical literature review, identifying gap				
areas from literature and research database.				
	SYLLABUS CONTENT Motivation and objectives – Research methods vs. Methodology. Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical, concept of applied and basic research process, criteria of good research. Defining and formulating the research problem, selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary sources, reviews, monograph, patents, research databases, web as a source, searching the web, critical literature review, identifying gap areas from literature and research database.	SYLLABUS CONTENT HOURS Motivation and objectives – Research methods vs. 9 Methodology. Types of research – Descriptive vs. 9 Mathodology. Types of research – Descriptive vs. 9 Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical, concept of applied and basic research process, criteria of good research. 9 Defining and formulating the research problem, selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary sources, reviews, monograph, patents, research databases, web as a source, searching the web, critical literature review, identifying gap areas from literature and research database. 9	SYLLABUSCONTENTHOURSCOsMotivation and objectives – Research methods vs.9CO1Methodology. Types of research – Descriptive vs.CO2CO2Analytical, Applied vs. Fundamental, QuantitativeCO3CO4vs. Qualitative, Conceptual vs. Empirical, conceptCO4CO5good research.CO5CO5Defining and formulating the research problem, good research.9CO1celecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary sources, reviews, monograph, patents, research databases, web as a source, searching the web, critical literature review, identifying gap areas from literature and research database.CO5	

III	Interpretation of Findings, Technique of	9	CO1	K1,K2,K3	
	Interpretation, Precaution in Interpretation,		CO2	K4,K5,K6	
	Significance of Report Writing, Different Steps in		CO3		
	Writing Report, Layout of the Research Report,		CO4		
	Research Papers; Writing Research Papers, Thesis,		CO5		
	Reports and Project Proposals; Formatting,		005		
	Appendices, Citation Formats and Style; General				
	Conventions, Issues, Plagiarism and Copyright.				
IV	Development of working hypotheses, Types of	9	CO1	K1,K2,K3	
	Errors, Level of Significance, Critical Region,		CO2	K4,K5,K6	
	Power of a Test, Tests of Significance for Large		CO3		
	Samples, Tests of Significance Small Samples,		CO4		
	Confidence Intervals		CO5		
V	Chart Types-Bar charts, Legends, Filters and	9	CO1	K1,K2,K3	
	Hierarchies -Line charts - Highlight Tables - He		CO2	K4,K5,K6	
	maps-Bullet charts-Cumulative sums with		CO3		
	waterfall charts. Aggregate Functions - Calculated		CO4		
	fields - Aggregations in calculated fields - Text		CO5		
	operator-Data fields-Logical functions -				
	Parameters-Types of calculations - Quick table				
	calculations-Level of detail expression				
T 4 T					
1 Gara BI Karadia R Agarwal E and Agarwal IIK 2002 An introduction to Passarah					
I. Garg, B.L., Karadia, K., Agarwai, F. and Agarwai, U.K., 2002. An introduction to Research Methodology PBSA Publishers					
	adebra BI 2000 Law relating to patents tradem	arks convrid	ht designs	and geographical	
2. w	dications Universal Law Publishing	arks, copyrig	in designs	and geographical	
3 Re	esearch Methodology: a step-by-step guide for beginne	ers Kumar P	earson Edua	cation	
4 Pra	ctical Research Methods. Dawson, C., UBSPD Pvt, L	td.			
Sugges	sted Readings				
1	. Anthony, M., Graziano, A.M. and Raulin, M.L., 20	09. Research	Methods: A	A Process of	
Inquiry, Allyn and Bacon.					
2	. Carlos, C.M., 2000. Intellectual property rights, the	WTO and de	eveloping co	ountries: the	
	TRIPS agreement and policy options. Zed Books, New York				
Web I	Resources				
	1.https://shodhganga.inflibnet.ac.in/				

CourseOutcomes (COs)and Cognitive LevelMapping

	PDS2506-RESEARCH METHODOLOGY`(MC)	COGNITIVE LEVEL
CO1	To remember and understand the Research Methodology concepts.	K1,K2
CO2	To apply report writing concept in the research.	К3
CO3	To illustrate Plagiarism and Copyrights.	K4
CO4	To assess data visualizations operations through different method.	K5
CO5	To construct solutions to resolve various real-world problems.	K6

Course Code	PDS3501
Course Title	MULTIVARIATE TECHNIQUES FOR DATA
	ANALYTICS
Credits	4
Hours/Week	4
Category	MC
Semester	III
Regulation	2022

- 1. To understand the relationships between the variables.
- 2. Descriptive statistics helps to understand the characteristics of the features involved in the data.
- 3. Course enables one to group features in a data set.
- 4. Provides knowledge to form clusters of the observation in big data.
- 5. Learn techniques for dimension reduction and feature selection.

Course Objective:

- 1. To understand the basic measurement techniques and nature of the features.
- 2. To study the characteristics of the features and their relationship.
- 3. To derive and evaluate the factors and validate them.
- 4. To perform cluster analysis and group observations based on clusters.
- 5. To reduce the dimension of the features by discriminant technique and Principal component analysis.

Pre requisites: Basic knowledge in mathematics

	SYLLABUS			
UNIT	CONTENT	HRS	COs	COGNITIVE
				LEVEL
Ι	Measurement Scales(Metric and Non-metric	8	CO1	K1
	Measurement Scales) – Classification of		CO2	K2
	Multivariate Techniques(Dependence and Inter-		CO3	K3
	dependence Techniques) – Applications of		CO4	K4
	Multivariate Techniques in different disciplines.		CO5	K5
				K6
II	Introduction to Factor Analysis – Meaning,	14	CO1	K1
	Objectives and Assumptions – Designing a Factor		CO2	K2
	Analysis Study – Deriving Factors – Assessing		CO3	K3

	Overall Factors – Validation of Factor Analysis.		CO4	K4
			CO5	K5
				K6
III	Introduction to Cluster Analysis – Objectives and	14	CO1	K1
	Assumptions – Research Design in Cluster		CO2	K2
	Analysis – Hierarchical and Non-hierarchical		CO3	K3
	Methods – Interpretation of Clusters – Validation		CO4	K4
	of Profiling of Clusters.		CO5	K5
				K6
IV	Introduction to Discriminant Analysis – Concepts,	12	CO1	K1
	Objectives and Applications – Procedure for		CO2	K2
	conducting Discriminant Analysis – Stepwise		CO3	K3
	Discriminant Analysis – Mahalanobis Procedure –		CO4	K4
	Logit Model.		CO5	K5
				K6
V	Dimensionality Reduction – Deriving Orthogonal	12	CO1	K1
	Projections – Lower Dimensional Subspaces –		CO2	K2
	Characterization through Singular Value		CO3	K3
	Decomposition and Eigenvalue Analysis –		CO4	K4
	Rayleigh Quotient – Kernel PCA – Functional		CO5	K5
	PCA.			K6

TEXT BOOKS:

- 1. Joseph F Hair, William C Black etal , "Multivariate Data Analysis" , Pearson Education, 7th edition, 2013.
- 2. T. W. Anderson, "An Introduction to Multivariate Statistical Analysis, 3rd Edition", Wiley, 2003.
- William r Dillon, John Wiley & sons, "Multivariate Analysis methods and applications", Wiley, 1984.
- 4. Naresh K Malhotra, Satyabhusan Dash, "Marketing Research An Applied Orientation", Pearson, 2011.

SUGGESTED READINGS:

- 1. Chatfield C, A.J.Collins, "Introduction to Multivariate Analysis", Springer Nature, 2020.
- 2. Dawn Iacobucci, "Multivariate Statistics and Marketic Analytics", 2014.
- 3. David A.Aaker "Multivariate analysis in marketing- Theory and application", Wadsworth Pub Co., 2017.
- 4. Johnson and Wichern, "Applied Multivariate Statistical Analysis", Pearson, 2015.

Course Outcomes (COs) and Cognitive Level Mapping

PDS3501-MUI	Cognitive levels		
	ANALYTICS (MC)		
CO1	Understanding Measurement scales and	K1, K2	
	features.		
CO2	Apply statistical method to form and avaluate	K3	
	factors		
CO3	Construct clusters and grouping observations	K4	
CO4	Dimension reduction techniques	K5	
C05	Feature selection and grouping techniques	K6	

Course Code	PDS 3502
Course Title	Deep Learning
Credits	04
Hours/Week	04
Category	Major Core(MC)–Theory
Semester	Ш
Regulation	2022

- 1. This course represents the computational challenges of building stable representations for high-dimensional data, such as images, text and data.
- 2. Deep Learning covers the concept of various neural networks such as CNN and RNN.
- 3. It helps to understand the concept of Boltzmann machine and computer vision
- 4. This course covers the fundamentals of deep learning, and the main research activities in this field.

Course Objectives

- 1. Understand the context of neural networks and deep learning
- 2. Understand the data needs of deep learning
- 3. Have a working knowledge of neural networks and deep learning
- 4. Explore the parameters for neural networks

Prerequisites Basic Knowledge in linear algebra, and probability theory.

	SYLLABUS						
UNIT	CONTENT	HOURS	COs	COGNITIVE			
				LEVEL			
Ι	Artificial Neural Networks:	12	CO1	K1,K2,K3			
	The Neuron – Activation Function –		CO2	K4,K5,K6			
	Gradient Descent – Stochastic Gradient		CO3				
	Descent – Back Propagation – Business		CO4				
	Problem.		CO5				
II	Convolutional Neural Networks:	12	CO1	K1,K2,K3			
	Convolution Operation - ReLU layer -		CO2	K4,K5,K6			
	Pooling – Flattening – Full Conversion		CO3				
	Layer – Softmax and Cross-Entropy.		CO4				
			CO5				
III	Recurrent Neural Networks:	12	CO1	K1,K2,K3			
	RNN intuition – Tackling Vanishing		CO2	K4,K5,K6			
	Gradient Problem – Long Short-Term		CO3				
	Memory – Building a RNN –		CO4				
	Evaluating the RNN - Improving the		CO5				
	RNN – Tuning the RNN.						

IV	Boltzmann Machines:	12	CO1	K1,K2,K3	
	Components of Boltzmann Machine -		CO2	K4,K5,K6	
	Search and Learning Problem –		CO3		
	Applications of Boltzmann Machine -		CO4		
	Restricted Boltzmann Machine – Deep		CO5		
	Belief Networks – Deep Boltzmann				
	Machine				
V	Computer Vision:	12	CO1	K1,K2,K3	
	Viola-Jones Algorithm – Haar-like		CO2	K4,K5,K6	
	Features – Integral Image – Training		CO3		
	Classifiers – Adaptive Boosting –		CO4		
	Cascading – Face Detection with Open		CO5		
	CV.				
Text Bo	bks				
1	1. Francois Challot, "Deep learning with Python", Manning, 2017.				
2	Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence, By Jon				
	Krohn, Grant Beyleveld and Aglaé Bassens, September 2022.				
3	. Ian Goodfellow, "Deep Learning", MIT Pre	ess, 2017.			
Suggeste	d Readings				
1	Josh Patterson, "Deep Learning: A Practition	oner's Approac	ch", PACK	Т, 2017.	
2	Dipayan Dev, "Deep Learning with Hadoop", PACKT, 2017.				
3	Hugo Larochelle's Video Lectures on Deep Learning				
Web Rea	sources				
1	1. <u>https://www.ibm.com/cloud/learn/deep-learning</u>				
2	https://www.coursera.org/specializations/deep-learning				
3	https://www.simplilearn.com/tutorials/deep-learning-tutorial				

CourseOutcomes (COs)and Cognitive LevelMapping

	PDS 3502DEEP LEARNING(MC)	COGNITIVE LEVEL
CO1	To understand the fundamentals of deep learning.	K1,K2
CO2	To improve the research in computer vision and multimedia field.	К3
CO3	To implement, train, and validate their own neural network.	K4
CO4	Be able to design and implement deep neural network systems.	K5
CO5	Be able to identify new application requirements in the field of computer vision.	K6

Course Code	PDS 3503		
Course Title	Deep Learning - Lab		
Credits	03		
Hours/Week	04		
Category	Major Core(MC)–Lab		
Semester	Ш		
Regulation	2022		
Course Overvie	ew		
1. This course helps to install deep learning libraries such as tensorflow, keras and pytorch.			

- 2. It covers the details of neural networks, CNN, RNN and its applications.
- 3. This course covers the various operations on images such as Segmentation, Transformations, etc...
- 4. It helps to develop deep learning application using neural networks.

Course Objectives

- 1. To develop the neural networks for handling Sequence and Image data
- 2. To learn hyper-parameter tuning in neural networks, which are crucial to make deep learning systems.
- 3. To perform various operations on image such as gradients, contours, etc.
- 4. To understand the neural network-based models with a wide range of exciting applications

Prerequisites Basic Knowledge in Python Programming & Machine Learning Techniques

SYLLABUS							
UNIT	CONTENT	HOURS	COs	COGNITIVE			
				LEVEL			
Ι	1. Setting up the Spyder IDE	12	CO1	K1,K2,K3			
	Environment and Executing a Python		CO2	K4,K5,K6			
	Program		CO3				
	2. Installing Keras, Tensorflow and		CO4				
	Pytorch libraries and making use of		CO5				
	them						
	3. Artificial Neural Networks						
II	4. Convolutional Neural Networks with	12	CO1	K1,K2,K3			
	Images and Text data		CO2	K4,K5,K6			
			CO3				
	5. Image Transformations		CO4				
			CO5				
III	6. Image Gradients and Edge Detection	12	CO1	K1,K2,K3			

			CO2	K4,K5,K6		
	7. Image Contours		CO3			
			CO4			
			CO5			
IV	8. Image Segmentation	12	CO1	K1,K2,K3		
			CO2	K4,K5,K6		
	9. Harris Corner Detection		CO3			
			CO4			
			CO5			
V	10. Face Detection using Haar	12	CO1	K1,K2,K3		
	Cascades		CO2	K4,K5,K6		
			CO3			
	11. Chatbot Creation		CO4			
			CO5			
Text Books						
1.	Ian Goodfellow, Yoshua Bengio, Aaron Co	urville, Deep I	Learning, N	IIT Press, 2016,		
	ISBN: 0387848576					
2.	Yegnanarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2009. 3. Golub,					
	G.,H., and Van Loan,C.,F., Matrix Computations, JHU Press, 2013.					
3.	3. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education,					
2004.						
Suggested Readings						
1.	Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning:					
	Data Mining, Inference, and Prediction, Second Edition, Springer, 2009, ISBN:					
2	0387848576					
2.	2. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006,					
2	ISBN: 038/310/38 Sebestion Beschke, Buthon Machine Learni	ng Doolst Dubl	iching 201	5 ICDN.		
5.	5. Sebasuan Kasenka, Fyulon Machine Leanning, Packt Publishing, 2015, ISDN:					
Web Reso	urces					
1	CS231n: Convolutional Neural Networks fo	r Visual Recoo	mition Sta	nford		
2	CS224d: Deep Learning for Natural Langua	ge Processing	Stanford			
3.	CS285: Deep Reinforcement Learning. Berk	celev				
	MIT 6.S094: Deep Learning for Self-Driving Cars. MIT					

CourseOutcomes (COs)and Cognitive LevelMapping

	PDS 3503DEEP LEARNING LAB (MC)	COGNITIVE
		LEVEL
CO1	Understand the role of deep learning in machine learning	K1,K2
	applications and get familiar with the use of TensorFlow/Keras in	
	deep learning applications.	
CO2	Apply various concepts related with Deep Learning to solve	K3
	Problems.	
CO3	Compare Various deep learning Algorithms used for Classification	K4
	Segmentation and detection.	
CO4	Analyze different deep learning models in Image related projects.	K5
CO5	Be able to create deep learning applications such as Chatbot,	K6
	Object detection, etc.	

Course Code	PDS 3504
Course Title	Cloud Computing
Credits	04
Hours/Week	04
Category	Major Core(MC)–Theory
Semester	Ш
Regulation	2022

- 1. This course helps to understand the concepts and techniques in cloud computing.
- 2. It provides in-depth knowledge on cloud computing, types of cloud services and models.
- 3. This course imparts knowledge on the concepts of serverless architecture and DevOps.
- 4. It also explains the various cloud applications and data analytics as a service in cloud.

Course Objectives

- 1. To identify the basic elements of cloud architecture.
- 2. To familiarize the different services and models in cloud with examples.
- 3. To learn the concept of serverless architecture and DevOps.
- 4. To understand the cloud data centers and cloud security.

Prerequisites Basic knowledge in Computer Science and Internet.

SYLLABUS

TINIT	CONTENT	HOUDS	COa	COCNITIVE
UNII	CONTENT	HOURS	COS	COGNITIVE
				LEVEL
Ι	Unit – I: Introduction	12	CO1	K1,K2,K3
	Overview of Cloud Computing -Essential		CO2	K4,K5,K6
	Characteristics of cloud computing -Cloud computing		CO3	
	architecture, Cloud Reference Model (NIST		CO4	
	Architecture) – Operational models such as private,			
	dedicated, virtual private, community, hybrid and		CO5	
	public cloud – Service models such as laas, Paas and			
	SaaS – Example cloud vendors – Google cloud			
	platform, Amazon AWS, Microsoft Azure and Open			
	Stack.			
II	Unit – II: Platform Engineering	12	CO1	K1,K2,K3
	Cloud Native Design and Microservices-		CO2	K4,K5,K6
	Containerized - Dynamically orchestrated design -		CO3	
	Continuous delivery - Support for a variety of client		CO4	
	devices - Monolithic vs Microservices Architecture -			
	Characteristics of microservice architecture – 12 factor		CO5	
	application design - Service discovery - Service			
	Registry.			

III	Unit – III: Serverless Architecture and DevOps	12	CO1	K1,K2,K3	
	Function as a Service (FaaS) - Backend as a Service		CO2	K4,K5,K6	
	(BaaS) - Advantages of serverless architectures – AWS		CO3		
	Lamda - AWS Fargate; Introduction to DevOps - The		CO4		
	DevOps toolchain – DevOps Practices -Continuous		001		
	Integration (CI), Continuous Delivery (CD),		CO5		
	Continuous Deployment – Quality Attributes for		0.00		
	DevOps – DevOps cloud models.				
IV	Unit- IV Cloud Data Centers & Cloud Security	12	CO1	K1,K2,K3	
	Historical Perspective, Data center Components,		CO2	K4,K5,K6	
	Design Considerations, Power Calculations, Evolution		CO3		
	of Data Centers, Cloud data storage - CloudTM.		CO4		
	Security Considerations – CIA Triad – STRIDE Threat				
	Model - Cloud specific Cryptographic Techniques -		CO5		
	Security by Design				
V	Unit V Data Analytics as a Service & Cloud	12	CO1	K1,K2,K3	
	applications		CO2	K4,K5,K6	
	Hadoop as a service, Map Reduce on Cloud, Chubby		CO3		
	locking Service; Amazon Simple Notification Service		CO4		
	(Amazon SNS), multi-player online game hosting on				
	cloud resources, Building content delivery networks		CO5		
	using clouds.				
Text Boo	ks				
1.	Architecting Cloud Computing Solutions by Scott Goess	ling, Kevin	n L. Jacks	son, Publisher:	
	Packt Publishing, Release Date: May 2018				
2.	Software Architect's Handbook, by Joseph Ingeno, Publi	shed by Pa	ckt Publ	ishing, 2018	
3.	Kai Hwang, Geoffrey Fox, Jack J. Dongarra, Morgan Ka	ufmann, "I	Distribute	ed and Cloud	
	Computing: From Parallel Processing to the Internet of T	Things," 1st	Edition,	2011.	
4.	Gautham Shroff, "Enterprise Cloud Computing: Technol	logy, Archi	tecture, A	Applications",	
	Cambridge press, 2010.				
5.	Learning Path: AWS Certified Machine Learning-Specia	alty ML, By	y Noah G	ift, April 2022	
6.	6. Microservices: Flexible Software Architecture, by Eberhard Wolff, Publisher: Addison-				
	Wesley Professional, Release Date: October 2016				
Suggeste	d Readings				
1.	KrisJamsa,2014. Cloud computing SaaS, PaaS, Virtualiz	ation, Busi	ness, Mo	bile security	
	and more, 1st Edition, Jones & Batrlett Students Educati	on.			
2.	Rajkumar Buyya, Christian Vecchiola, S.Thamaraiselvi,	2013. Mas	tering clo	oud computing,	
	1st Edition, Tata McGrawHill.				
3.	Arshdeep Bahhga and Vijay Madisetti, 2017. Cloud Con	nputing Ha	nds on A	pproach, 1st	
	Edition, University Press.				

Web Resources

- 1. <u>https://www.javatpoint.com/cloud-computing-tutorial</u>
- 2. <u>https://www.simplilearn.com/tutorials/cloud-computing-tutorial</u>
- 3. <u>https://nptel.ac.in/courses/106/104/106104182/</u>

CourseOutcomes (COs)and Cognitive LevelMapping

	PDS 3504CLOUD COMPUTING(MC)	COGNITIVE
		LEVEL
CO1	To remember and understand cloud computing Services, Models	K1,K2
	and cloud Vendors.	
CO2	To understand the characteristics of cloud native applications and	K1, K2
	microservices.	
CO3	To explore the concept of Serverless architecture and DevOps.	K3, K4
CO4	To evaluate the historical perspective of cloud data centers and	K5
	understand the cloud security considerations	
CO5	To create different use cases of the applications of cloud in diverse	Кб
	domains.	

Course Code	PDS 3505
Course Title	Cloud Computing – Lab
Credits	03
Hours/Week	04
Category	Major Core(MC)–Lab
Semester	ш
Regulation	2022

- 1. This course provides the way to create web applications in the cloud environment.
- 2. It helps to enable the file sharing and deploying the web applications in the cloud.
- 3. This course helps to create Docker Artifactory and execute the push/pull commands.
- 4. It also helps to create pipeline for Git and serverless applications

Course Objectives

- 1. To explore cloud computing driven commercial systems such as Microsoft Azure, Amazon AWS, and other cloud applications
- 2. To provide a foundation of the Cloud Computing enabling them to start using and adopting Cloud Computing services and tools in their real-life scenarios
- 3. Formulate DevOps based design and development of cloud applications
- 4. To impart knowledge in applications of cloud computing

Prerequisi	Prerequisites Basic Knowledge in Programming and Network					
	SYLLABUS					
UNIT		CONTENT	HOURS	COs	COGNITIVE LEVEL	
I	1. 2.	Create an EC2 Instance and Deploy the Sample web application in EC2. Developing the sample web apps in Azure / GCP Platform	12	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6	
Π	3.	Connect Linux instance using SSH and enable File sharing SCP from one EC2 Instance to another. Deployment of a basic web app and add additional functionality (Java scripts based)	12	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6	

III	5. Installing and Configuring Dockers	12	CO1	K1,K2,K3	
	in local host and running multiple		CO2	K4,K5,K6	
	images on a Docker Platform		CO3		
	6. Create a Docker Repo or		CO4		
	Artifactory and execute Push/Pull		CO5		
	commands for modified docker				
	base images				
IV	7. DevOps deployment of library	12	CO1	K1,K2,K3	
	automation etc. on the cloud		CO2	K4,K5,K6	
	platform with one complete upgrade		CO3		
	of the application		CO4		
	8. Create One simple Pipeline for Git,		CO5		
	Jenkins, and Docker in local mode				
V	9. Serverless on AWS- sample	12	CO1	K1,K2,K3	
	application AWS Lambda/ AWS		CO2	K4,K5,K6	
	Fargate		CO3		
	10. Amazon Simple Notification		CO4		
	Service - AWS SNS		CO5		
Text Book	s				
1.	John Rhoton and Risto Haukiojal, "Cloud	Computing A	rchitecture	d : Solution	
	Design Handbook", Recursive Press, 2013.				
2.	Dinkar Sitaram, Geetha Manjunathan, "Moving to the Cloud: Developing Apps				
	in the new world of Cloud Computing", Syngress, 2012				
Suggested	Readings				
1.	. Rajkumar buyya, Christian vecchiola, S Thamarai Selvi , "Mastering cloud				
	computing", Tata McGraw Hill Education Private Limited, 2013				
2.	Anthony T .Velte, Toby J. Velte, Robert Elsenpeter, "Cloud Computing a				
	Practical Approach", Tata McGraw-HILL, 2010 Edition.				
3.	3. Barrie sosinsky, "Cloud computing bible, Wiley publishing				
Web Reso	urces				
1.	https://cloud.google.com/appengine/docs	,			
2.	https://www.chef.io/solutions/cloud-manag	gement/			
3.	https://aws.amazon.com/documentation				
4.	https://www.cloudfoundry.org/				
5.	https://puppet.com/blog/implement-a-mess	age-queue-you	ur-cloud-ap	plication	

Course Outcomes (COs)and Cognitive Level Mapping

PDS 3505CLOUD COMPUTING LAB(MC)	COGNITIVE
	LEVEL
Analyze and study the basics of cloud computing, cloud models	K1,K2
and its applications	
An ability to use techniques, tools, skills in a secured cloud	K3
environment	
Design, implement and evaluate a cloud-based system, process,	K4
component, or program to meet desired needs	
Analyze and use of an appropriate framework and APIs for the	K5
task	
Deploy real-world applications onto the cloud	K6
	PDS 3505CLOUD COMPUTING LAB(MC) Analyze and study the basics of cloud computing, cloud models and its applications An ability to use techniques, tools, skills in a secured cloud environment Design, implement and evaluate a cloud-based system, process, component, or program to meet desired needs Analyze and use of an appropriate framework and APIs for the task Deploy real-world applications onto the cloud

Course Code	PDS3601
Course Title	NATURAL LANGUAGE PROCESSING
Credits	2
Hours/Week	4
Category	ME
Semester	III
Regulation	2022

- 1. Get an overview of traditional NLP concepts and methods
- 2. Preprocess the text and text classification.
- 3. To perform language modelling and sequence tagging.
- 4. Enable one to perform sequence to sequence task.
- 5. Semantic and pragmatic analysis on text coherence.

Course Objective:

- 1. To incorporate basic data pre-processing procedures on text.
- 2. To develop appropriate language modelling.
- 3. To apply statistical tools to develop a model for prediction using probabilistic approach.
- 4. To perform topic analysis using semantic analysis.

Pre requisites : Basic understanding of English language, mathematics and Statistics

SYLLABUS				
UNIT	CONTENT	HRS	COs	COGNITIVE LEVEL
Ι	Overview: Origins and challenges of NLP-	8	CO1	K1
	Theory of Language -Features of Indian		CO2	K2
	Languages – Issues in Font –Models and		CO3	K3
	Algorithms- NLP Applications.		CO4	K4
			CO5	K5
				K6
II	Phonology – Computational Phonology -	14	CO1	K1
	Words and Morphemes – Segmentation –		CO2	K2
	Categorization and Lemmatisation – Word		CO3	K3
	Form Recognition – Valency - Agreement -		CO4	K4
	Regular Expressions – Finite State		CO5	K5
	Automata – Morphology- Morphological			K6
	issues of Indian Languages –			
	Transliteration.			

III	Probabilistic Models of Pronunciation and	14	CO1	K1
	Spelling – Weighted Automata – N- Grams		CO2	K2
	- Corpus Analysis - Smoothing - Entropy -		CO3	K3
	Parts-of-Speech – Taggers – Rule based –		CO4	K4
	Hidden Markov Models – Speech		CO5	K5
	Recognition.			K6
IV	Basic Concepts of Syntax – Parsing	12	CO1	K1
	Techniques – General Grammar rules for		CO2	K2
	Indian Languages – Context Free Grammar		CO3	K3
	– Parsing with Context Free Grammars –		CO4	K4
	Top Down Parser – Earley Algorithm –		CO5	K5
	Features and Unification - Lexicalised and			K6
	Probabilistic Parsing.			
V	Computational Representation – Meaning	12	CO1	K1
	Structure of Language – Semantic Analysis		CO2	K2
	– Lexical Semantics – WordNet –		CO3	K3
	Pragmatics – Discourse – Reference		CO4	K4
	Resolution – Text Coherence – Dialogue		CO5	K5
	Conversational Agents.			K6

TEXT BOOKS:

- 1 Daniel Jurafskey and James H. Martin "Speech and Language Processing", Prentice Hall, 2009.
- 2. Christopher D.Manning and Hinrich Schutze, "Foundation of Statistical Natural Language Processing", MITPress, 1999.
- 3. Ronald Hausser, "Foundations of Computational Linguistics", Springer-Verleg, 1999.
- 4. James Allen, "Natural Language Understanding", Benjamin/Cummings Publishing Co. 1995.

SUGGESTED READINGS:

- 1. James Pustejovsky and Amber stubbs, "Natural language Annotation for machine learning", Shroff Publishers, 2012.
- 2. Daniel M. Bikel, "Multilingual Natural language processing", Pearson, 2012.
- 3. Emily M. Bender, "Linguistic Fundamentals for Natural language processing", Margon & Claypool Pub., 2013.
- 4. Hobson Lane, "Natural language processing in action", Manning Pub., 2013.

PDS3601- NAT	Cognitive levels	
CO1	Traditional NLP concepts and methods	K1, K2
CO2	Text preprocessing	К3
CO3	Probabilistic models and corpus analysis	K4
CO4	Lexical and parsing techniques	K5
C05	Topic analysis using semantic and lexical	K6
	semantic approach	

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	PDS 3602
Course Title	Reinforcement Learning
Credits	02
Hours/Week	04
Category	Major Elective(ME)–Theory
Semester	Ш
Regulation	2022

- 1. Reinforcement Learning focuses on general-purpose formalism for automated decisionmaking and AI.
- 2. Reinforcement learning aims to model the trial-and-error learning process that is needed in many problem situations where explicit instructive signals are not available.
- 3. This course introduces the statistical learning techniques where an agent explicitly takes actions and interacts with the world.
- 4. It enables to understand the importance and challenges of learning agents that make intelligent decision-making is of vital importance today.
- 5. This course enables the key concepts of Reinforcement Learning, underlying classic and modern algorithms in RL.

Course Objectives

- 1. To formalize problems as Markov Decision Processes.
- 2. To understand the algorithmic concepts in Temporal Difference Learning.
- 3. To learn the RL tasks and the core principals behind the RL, including policies and eligibility traces.
- 4. To understand and work with function approximate solutions.
- 5. To Learn the policy gradient methods from vanilla to more complex cases

Prerequisi	Prerequisites Linear Algebra, Multivariable Calculus, Probability and Statistics			
SYLLABUS				
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Unit I: Monte-Carlo Methods Monte-Carlo methods: policy evaluation, rollouts, on policy and off-policy learning, importance sampling	12	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6
II	Unit II: Temporal Difference	12	CO1	K1,K2,K3
-----------	--	-----------------	------------	----------------------
	Learning		CO2	K4,K5,K6
	Temporal Difference learning: TD		CO3	
	prediction, Optimality of TD(0), SARSA,		CO4	
	Q-learning, Games and after states,		CO5	
	Maximization Bias and Double Learning.		000	
III	Unit III: Eligibility Traces	12	CO1	K1,K2,K3
	Eligibility traces: n-step TD prediction,		CO2	K4,K5,K6
	TD(lambda), forward and backward		CO3	
	views, Q(lambda), SARSA(lambda),		CO4	
	replacing traces and accumulating traces.		CO5	
IV	Unit IV: Function Approximation	12	CO1	K1,K2,K3
	Function Approximation: Value		CO2	K4,K5,K6
	prediction, gradient descent methods,		CO3	
	linear function approximation, Feature		CO4	
	Construction for Linear Methods,		CO5	
	Selecting Step-Size Parameters, Deep Q-			
	learning.			
V	Unit V. Policy Cradient methods	12	CO1	K1 K2 K3
v	Policy Approximation and its	12		K1,K2,K3 K4 K5 K6
	Advantages PEINEOPCE algorithm		C02	114,113,110
	actor-critic methods Policy Gradient for		CO3	
	Continuing Problems Policy		CO4	
	Parameterization for Continuous Actions		CO5	
	Asynchronous Advantage Actor-Critic			
	Case studies: Samuel's checker player			
	TDgammon, Acrobot, AlphaGo			
	8			
Text Boo	ks			
1.	R. S. Sutton and A. G. Barto. Reinforcemer	nt Learning - A	n Introduc	tion. MIT Press.2nd
	Edition. 2018.	U		
Suggestee	l Readings			
1.	Li, Yuxi. "Deep reinforcement learning." ar	Xiv preprint a	rXiv:1810.	06339 (2018).
2.	Wiering, Marco, and Martijn Van Otto	erlo. "Reinfor	cement le	arning." Adaptation,
	learning, and optimization 12 (2012): 3.			-
3.	3. Russell, Stuart J., and Peter Norvig. "Artificial intelligence: a modern approach." Pearson			

Education Limited, 2016.

Web Resources

- 1. https://www.coursera.org/learn/fundamentals-of-reinforcement-learning
- 2. https://onlinecourses.nptel.ac.in/noc20_cs74/preview
- 3. Video Lectures by Prof. David Silver
- 4. Video Lectures by Prof. B.Ravindran

Course Outcomes (COs)and Cognitive Level Mapping

	PDS 3602REINFORCEMENT LEARNING (ME)	COGNITIVE
		LEVEL
CO1	Identify basic concepts, terminology, theories, models and	K1,K2
	methods in reinforcement learning.	
CO2	To apply the reinforcement learning algorithmic concepts to the	K3
	real-world problems.	
CO3	To know the modelling and analysis tools, techniques for	K4
	problems of dynamic decision making under uncertainty	
CO4	To know the reinforcement learning algorithms when faced with	K5
	uncertainty problems and the convergence and accuracy	
	guarantees that such algorithms would provide.	
CO5	To create numerous Reinforcement Learning Applications	K6

Course Code	PDS 3701
Course Title	MEAN Stack
Credits	03
Hours/Week	06
Category	Major Core(MC)–Theory
Semester	Ш
Regulation	2022

Course Overview

The aim of a MEAN stack developer is to build complete web applications including frontend, backend, and database management. It possesses knowledge of every part of the development and work across a number of tools and frameworks.

Course Objectives

- 1. To implement Forms, inputs and Services using Angular JS
- 2. To develop a simple web application using Nodejs; Angular JS and Express
- 3. To implement data models using Mongo DB

Prerequisites	Basic knowledge on front end application using HTML5, CSS3, JavaScript along
	with jQuery frame work.

SYLLABUS

UNI	CONTENT	HOURS	Cos	COGNITIVE
Т				LEVEL
Ι	Introduction to Web Technology and Angular JS Introduction to Web Technology - Angular	12	CO1, CO2.	K1, K2.K3.K4. K5
	JSModel-View-Controller – Expression -Directives		CO3,	
	and Controllers - Angular JS Modules – Arrays –		CO4	
	Working with ng-model – Working with Forms –		CO5	
	Form Validation – Error Handling with Forms –			
	Nested Forms with ng-form – Other Form Controls.			
	 Develop a Form and validate using Angular JS 			
	2. Create and implement modules and controllers in Angular JS			
	3. Implement Error Handling in Angular JS			

Π	 DIRECTIVES& BUILDING DATABASES Filters – Using Filters in Controllers and Services – Angular JS Services – Internal Angular JS Services – Custom Angular JS Services – Directives – Alternatives to Custom Directives – Understanding the Basic options – Interacting with Server –HTTP Services – Building Database, Front End and Back End 1. Create and implement Custom directives 2. Front End and Back End applications. 	12	CO1 CO3 CO4 CO5	K1, K2, K4.K5,K6
III	 NODE JS AND EXPRESS FRAMEWORK Introduction –Using the Terminals – Editors – Building a Webserver with Node – The HTTP Module – Views and Layouts – Form Handling with Express - The Request and Response Objects –Handle bars – Comments and Blocks. 1. Create web applications using Express, Node JS and Angular JS 2.Form Handling with Express 3.Handle bars, Comments and Blocks. 	12	CO1 CO2 CO3C O4 CO5	K1, K2, K3, K4,K5, K6
IV	 INTRODUCTION TO MONGODB JSON and MongoDB – Adopting a Non-relational Approach – Opting for Performance vs. Features Running the Database Anywhere – Generating or Creating a Key – Using Keys and Values – Implementing Collections 1. Implement CRUD operations in MONGODB. 	12	CO 1 CO 2 CO 3 CO 4 CO5	K1, K2, K3, K4,K5,K6
V	DATA MODELS Designing the Database – Building Indexes – Inserting Data – Querying for Data – Updating Data – Removing Data – Referencing a Database 1. Implement MongoDB data models	12	CO1 CO2C O3 CO4 CO5	K1, K2, K3, K4,K5,K6

Text Book

- 1. Getting MEAN with Mongo, Express, Angular, and NodeBy Simon Holmes, Clive Herber · 2022 Manning Publications
- 2. AgusKurniawan-"AngularJS Programming by Example", First Edition, PE Press, 2014.
- 3. David Hows, Peter Membrey, EelcoPlugge "MongoDB Basics", Apress, 2014.
- 4. Ethan Brown, "Web Development with Node and Express", Oreilly Publishers, First Edition, 2014

Suggested Readings

1. Full Stack JavaScript Development With MEAN MongoDB, Express, AngularJS, and Node.JS By Colin J Ihrig, Adam Bretz · 2015 SitePoint Pty, Limited

Web Resources

- 1. https://www.geeksforgeeks.org/introduction-to-mean-stack/https://www.icmr.nic.in/
- 2. https://www.javatpoint.com/mean-stack-tutorial
- 3. https://www.sitepoint.com/introduction-mean-stack/

	MEAN Stack Lab	Cognitive Level
CO 1	To understand the usages of MEAN stack.	K1, K2
CO 2	To Applying programming constructs to Create Forms, validate and use Filters	K3
CO 3	To Illustrates identifying and handling errors.	K4
CO 4	To Implement Directives and Controllers.	K5
CO 5	To Create various Implement Data models in real world applications.	K6

Course Outcomes (COs)

Course Code	PDS2901
Course Title	DATA VISUALIZATION THROUGH R
Credits	01
Hours/Week	02
Category	Major Core (MC) – Theory
Semester	II
Regulation	2022

Course Overview

This course introduces the basics of R and the practical knowledge of data cleaning, reorganization, modeling, statistics, and analysis for research and visualization, particularly in geospatial fields. The goal of the course is to introduce students to the use of R programming for univariate and multivariate analysis and visualization, mapping and spatial analysis.

Course Objectives

- 1. Use RStudio to perform basic data analysis functions including Input/Output, basic Exploratory Data Analysis (EDA), and graphical output.
- 2. Use RStudio to develop, test, and execute R script.
- 3. Use advanced R programming to import, clean, transform, and summarize data.
- 4. Use ggplot2 to visualize data in points, lines, area charts and smoothed curves.
- 5. Import and map spatial data using R sf and ggplot2 package

Prerequisites		No prerequisites			
		SYLLAB	US		
UNIT		CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Intr Fun Ope in F	oduction Introduction to R – Help actions in R – Vectors – Vectorized erations – Functions in R – Packages $R_{}$	9	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6
Π	Mat Del Din List Cor fund	trix Operations – Adding and eting Rows and Columns – Higher mensional Arrays – Lists – General t Operations – Accessing List mponents and Values – Applying ctions to Lists	9	CO1 CO2 CO3 CO4 CO5	K1,K2,K3 K4,K5,K6

III	Creating Data Frames – Matrix-like	9	CO1	K1,K2,K3
	Operations on a Data Frame – Merging		CO2	K4,K5,K6
	Data Frames – Applying functions to		CO3	
	Data Frames – Factors and Tables –		CO4	
	Common Functions used with Factors –		CO5	
	Working with Tables		005	
IV	OOP- S3 Classes – S4 Classes –	9	CO1	K1,K2,K3
	Managing the Objects – Input/Output –		CO2	K4,K5,K6
	Accessing Keyboard and Monitor –		CO3	
	Reading and Writing Files – accessing		CO4	
	the Internet – String Manipulation.		CO5	
	ggplot2, Part I: Visualization of non-			
	spatial data			
	ggplot2, Part II: Visualization of			
	nonspatial data.			
V	Data Visualization	9	CO1	K1,K2,K3
	Introduction to GGPlot2 – Factors –		CO2	K4,K5,K6
	Aesthetics – Plotting with Layers –		CO3	
	Overriding Aesthetics – Mapping vs		CO4	
	Setting – Histograms – Density Charts		CO5	
	– Statistical Transformation – Facets –			
	Coordinates – Themes			
Text Boo	ks			
1.	g gplot2, Elegant Graphics for Data Analys	sis (2nd Edition	n), by Had	ley Wickham, Springer,
	(2016)			
2.	R for Data Science, Import, Tidy, Transform	m, Visualize a	nd Model I	Data, (1st Edition) by
	Hadely Wickham and Garrett Grolemund,	O'Reilly (2010	5)	
3.	Geocomputation with R by Robin Lovelace	e, Jakub Nowo	osad, Janne	s Muenchow (2019).
	Available at https://geocompr.robinlovelace	<u>e.net/.</u>		

4. patial Data Science with R by Robert J.

5.

Course Outcomes (COs)and Cognitive Level Mapping

	PDS2901- DATA VISUALIZATION (DC)	COGNITIVE
		LEVEL
CO1	Use RStudio to perform basic data analysis functions including	K1,K2
	Input/Output, basic Exploratory Data Analysis (EDA), and	
	graphical output.	
CO2	Use R Studio to develop, test, and execute R script.	K3
CO3	Use advanced R programming to import, clean, transform, and summarize data.	K4
CO4	Use ggplot2 to visualize data in points, lines, area charts and smoothed curve.	К5
CO5	Import and map spatial data using R sf and ggplot2 packages.	K6

Course Code	PDS3701
Course Title	INTER DISCIPLINARY: STATISTICS FOR COMPUTER SCIENCE
Credits	3
Hours/Week	6
Category	IDE
Semester	III
Regulation	2022
Course Overview	7.9

Course Overview:

- 1. Able to analyse basic characteristics of the features.
- 2. Can perform univariate and Bivariate analysis.
- 3. Enable decision making using testing of hypothesis.
- 4. Based on the relation of the features can be able to form factors.
- 5. Enable to perform dimension reduction and feature selection.

Course Objective:

- 1. To perform Explanatory data analysis.
- 2. To study the relationship between the features and develop a model.
- 3. To apply statistical techniques and derive factors.
- 4. To perform dimension reduction and feature selection and fine tune the precision of the model

Pre requisites: Basic understanding of Statistics

SYLLABUS										
UNIT	CONTENT	HRS	COs	COGNITIVE LEVEL						
Ι	Sampling Techniques – Data	14	CO1	K1						
	Classification – Tabulation – Frequency		CO2	K2						
	and graphic Representation – Measures		CO3	К3						
	of Central Tendency – Measures of		CO4	K4						
	Variation – Quartiles and Percentiles-		CO5	K5						
	Moments -Skewness and Kurtosis.			K6						
II	Scatter Diagram – Karl Pearson's Correlation	15	CO1	K1						
	Coefficient - Rank Correlation -Correlation		CO2	K2						
	Coefficient for Bivariate Frequency		CO3	K3						
	Distribution – Regression Coefficients –		CO4	K4						
	Fitting of Regression Lines.		CO5	K5						
				K6						

III	Statistical Tests of Significance - Test of	15	CO1	K1
	significance for mean(s), variance(s),		CO2	K2
	correlation coefficient(s), regression		CO3	K3
	coefficient, based on t, Chi-square and F-		CO4	K4
	distributions. Applications of Chi-square in		CO5	K5
	test of significance (independence of			K6
	attributes, goodness off it).			
IV	Introduction to Easter Analysis Magning	15	CO1	V 1
1 V	Introduction to Factor Analysis – Meaning,	15		
	Objectives and Assumptions – Designing a		CO2	K2
	Factor Analysis Study – Deriving Factors –		CO3	K3
	Assessing Overall Factors – Validation of		CO4	K4
	Factor Analysis.		CO5	K5
				K6
V	Introduction to Discriminant Analysis –	15	CO1	K1
	Concepts, Objectives and Applications –		CO2	K2
	Procedure for conducting Discriminant		CO3	K3
	Analysis – Stepwise Discriminant		CO4	K4
			CO5	K5
				K6

REFERENCES:

- 1. Gupta,S.C.andKapoor,V.K.: "FundamentalsofMathematicalStatistics", Sultan&Chand&S ons, NewDelhi,11th Ed, 2002.
- Joseph F Hair, William C Black etal, "Multivariate Data Analysis", Pearson Education, 7th edition, 2013.
- 3. Joseph F Hair, William C Black etal, "Multivariate Data Analysis", Pearson Education, 7th edition, 2013.
- 4. T. W. Anderson, "An Introduction to Multivariate Statistical Analysis, 3rd Edition", Wiley, 2003.

SUGGESTED READINGS:

- 1. James D.Miller, "Statistics for Data Science", Packt,2017.
- 2. Chatfield C, A.J.Collins, "Introduction to Multivariate Analysis", Springer Nature, 2020.
- 3. Dawn Iacobucci, "Multivariate Statistics and Marketic Analytics", 2014.

1.

- 1. https://onlinecourses.nptel.ac.in/noc22_mg87/preview
- 2. https://www.udemy.com/tutorial/learn-probability-concepts-and-counting-techniques/concepts-of-
- 3. sample-space-sample-points-and-events/
- 4. https://www.udemy.com/tutorial/learn-probability-concepts-and-counting-techniques/concepts-of-
- 5. sample-space-sample-points-and-events/

Course Outcomes (COs) and Cognitive Level Mapping

PDS3701- INTER COMPUTER SC	A DISCIPLINARY: STATISTICS FOR IENCE(IDE)	Cognitive levels
CO1	Concepts of descriptive Statistics and definitions	K1, K2
	definitions	
CO2	Problems in correlation and regression and its	К3
	interpretation	
CO3	Frame appropriate model and test its	K4
	significance	
CO4	Perform Factor analysis and its efficiency	K5
C05	Data reduction and feature selection using	K6
	discriminant analysis	

LOCF BASED DIRECT ASSESSMENTS

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED CIA QUESTION PAPER FORMAT (PG)

SECTION		Q. NO	COGNITIVE LEVEL (CL)					
			K1	K2	K3	K4	K5	K6
Α	$(5 \ge 1 = 5)$	1 (a)	+					
	Answer ALL	(b)	+					
		(c)	+					
		(d)	+					
		(e)	+					
	$(5 \ge 1 = 5)$	2(a)		+				
	Answer ALL	(b)		+				
		(c)		+				
		(d)		+				
		(e)		+				
В	$(1 \times 8 = 8)$	3			+			
	Answer 1 out of 2	4			+			
С	(1 x 8 = 8)	5				+		
	Answer 1 out of 2	6				+		
D	(1 x 12 = 12)	7					+	
	Answer 1 out of 2	8					+	
E	(1 x 12 = 12)	9						+
	Answer 1 out of 2	10						+
No. of CL based Questions with Max. marks			5 (5)	5 (5)	1 (8)	1 (8)	1 (12)	1 (12)
No. of CO based Questions with Max. marks			0	201	CO2	CO3	CO4	CO5
		10 (10)		1 (8)	1 (8)	1 (12)	1 (12)	

Forms of questions of **Section A** shall be MCQ, Fill in the blanks, True or False, Match the following, Definition, Missing letters. Questions of **Sections B, C, D** and **E** could be Open Choice/ built in choice/with sub sections. Component III shall be exclusively for cognitive levels K5 and K5 with 20 marks each. CIA shall be conducted for 50 marks with 90 min duration.

SECTION		Q. NO	O COGNITIVE LEVEL (CL)					
			K1	K2	K3	K4	K5	K6
Α	$(5 \times 1 = 5)$	1(a)	+					
	Answer ALL	(b)	+					
		(c)	+					
		(d)	+					
		(e)	+					
	$(5 \times 1 = 5)$	2(a)		+				
	Answer ALL	(b)		+				
		(c)		+				
		(d)		+				
		(e)		+				
В	$(3 \times 10 = 30)$	3			+			
	Answer 3 out of 5	4			+			
		5			+			
		6			+			
		7			+			
С	(2 x 12.5 = 25)	8				+		
	Answer 2 out of 4	9				+		
		10				+		
		11				+		
D	(1 x 15 = 15)	12					+	
	Answer 1 out of 2	13					+	
Е	$(1 \ge 20 = 20)$	14						+
	Answer 1 out of 2	15						+
No. of CL based Questions with Max. marks		5 (5)	5 (5)	3 (30)	2 (25)	1 (15)	1 (20)	
No. of CO based Questions with Max. marks		narks	С	01	CO2	CO3	CO4	CO5
		10 (10)		3 (30)	2 (25)	1 (15)	1 (20)	

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED END SEMESTER EXAMINATION QUESTION PAPER FORMAT (PG)

IMPORTANT

- Forms of questions of **Section A** shall be MCQ, Fill in the blanks, True or False, Match the following, Definition, Missing letters.
- Questions of Sections B, C, D and E could be Open Choice/ built in choice/questions with sub divisions.
- Maximum sub divisions in questions of Sections B, C shall be 2 and 4 in Sections D, E).

Course Outcome	CO1		CO2	CO3	CO4	CO5	TOTAL
Cognitive Levels	K1	K2	К3	K4	K5	K6	
CIA 1	5	5	8	8	12	12	50
CIA 2	5	5	8	8	12	12	50
Comp III	-	-	-	-	20	20	40
Semester	5	5	30	25	15	20	100
Total Marks (CL)	15 (6%)	15 (6%)	46 (19%)	41 (17%)	59 (25%)	64 (27%)	240
Total Marks (CO)	30 (12%)		46 (19%)	41 (17%)	59 (25%)	64 (27%)	240

TOTAL MARKS DISTRIBUTION OF DIRECT ASSESSMENTS BASED ON CL AND CO (PG)