LEARNING OUTCOMES - BASED CURRICULUM FRAMEWORK (LOCF) FOR POSTGRADUATE PROGRAMME

(with effect from 2022-23)

M.Sc. Physics DEPARTMENT OF PHYSICS

LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600034

PREFACE

Physics is the branch of science dealing with matter and energy to comprehend the laws of nature which attempts to explain the way nature works. At post graduate level in our college, it assimilates basics for a deeper understanding of nature and enable students to follow the latest developments not only in basic science but also in areas of advanced technology. It comprehends, theoretical as well as practical knowledge about the principles behind every physical process.

The curriculum for M.Sc. degree Physics based on the Learning Outcome based Curriculum Framework (LOCF) model encompasses of eclectic variety of topics like Classical Mechanics, Statistical Mechanics, Mathematical Physics, Quantum Mechanics, Spectroscopy, Solid state Physics, Nuclear Physics, Advanced Mathematical Methods and Electronics. It includes other interdisciplinary branches of science like Astrophysics, Geophysics, Nanoscience, Climate change, Computational Physics and Network technology. The subjects are envisioned to understand the basic principles of Physics as well as provides enhanced knowledge in applying skills practically through various electronics and computational laboratory experiments. The combined assessment methods with appropriate cognitive levels are framed according to the revised BLOOM'S taxonomy.

The Post Graduate curriculum of M.Sc. Physics motivate young minds to aspire them to take research and promote them to take reputed scientific positions as their career in esteemed organizations throughout the globe. Based on the syllabus, students are eligible to appear for Government examinations. The LOCF curriculum for M.Sc. Physics is all about understanding physical systems and developing creative ability to produce highly motivated young scientific minds. It is designed to cater to the student's needs in view of launching their career in diverse fields. As the curriculum framed is based on the syllabus of the National level entrance examinations like National Eligibility Test (NET) for Junior Research Fellow (JRF) which will support the students to complete their research with government fellowship. They can enrich their knowledge in the field of their choice by taking up Value Added courses. This program gives the provision to the students to do the project during the course of the study. Students in turn can earn academic credits for the completion of the project. The department endeavors to impart an understanding of advanced concepts of Physics and its relevance in modern technological advances by way of skills acquisition, material characterization, interpreting techniques, innovation and entrepreneurship required for building their career in the appropriate fields of interest. We sincerely acknowledge the valuable inputs of the reviewers of the syllabi Dr. S. Pari, Head of the Department, National College, Trichy, Dr. Manikandan, Associate Professor and Division head, School of advanced sciences, Vellore Institute of Technology, Chennai, Dr. P. Praveen Kumar, Associate Professor, Presidency College, Chennai.

We acknowledge the contributions of the following members of the Board of Studies Dr. K. Ravichandran (University Nominee-PG Board), Dr. R. Jayavel, Professor, Anna University, Chennai, Dr. G. Vinitha (College Nominee-Subject Expert- Outside parent institute), Associate Professor, School of advanced sciences, Vellore Institute of Technology, Chennai, Dr. Mayur Sundararajan, Verza drives, Coimbatore (Industry Representative), Mr. P. Irudayaraj, Wipro technologies (Alumni), Daniel John Britto (PG Student representative).

DECLARATION STATEMENT

This is to inform you that the student's web version of the LOCF model is prepared and it has been formatted according to the guidelines given by LOCF committee. The subject teachers have also given declaration, that the contents are correct to the best of their knowledge.

J p Joyleve

Dr .J.P. Angelena (LOCF Mentor)

J. Stanuy my Dr. A. Stanley Raj

(LOCF Mentor)

1. Unome Aux

Dr. S. Jerome Das

(Head of the Department)

Dr. S. JEROME DAS Head Dept. of Physics Loyola College Chennai - 600 034

CONTENTS

S. No.	Details	Page
1.	Vision and Mission of Loyola College	5
2.	Programme Educational Objectives (PEOs)	6
3.	Programme Outcomes (POs)	7
4.	Programme Specific Outcomes (PSOs)	9
5.	Correlation Rubrics	10
6.	Mapping of PEOs with Vision and Mission	10
7.	Mapping of POs with PEOs	10
8.	Mapping of PSOs with PEOs	10
9.	Mapping of PSOs with POs	11
10.	PG Overall Course Structure	12
11.	M.Sc. Physics Restructured CBCS Curriculum	14
	Course Descriptors (Major Core)	
12.	PPH1MC01 Classical Mechanics	16
13.	PPH1MC02 Electrodynamics	20
14.	PPH1MC03 Mathematical Physics	25
15.	PPH1MC04 Electronics – I	29
16.	PPH1MC05 Physics Practical – I	33
17.	PPH2MC01 Statistical Mechanics	37
18.	PPH2MC02 Electronics II	42
19.	PPH2MC03 Research Methodology	46
20.	PPH2MC04 Physics Practical – II	63
21.	PPH3MC01 Quantum Mechanics – I	67
22.	PPH3MC02 Spectroscopy	71
23.	Physics Practical III	92
24.	PPH4MC01 Quantum Mechanics – II	96
25.	PPH4MC02 Solid State Physics	100
26.	PPH4MC03 Nuclear Physics	104
27.	PPH4PJ01 Project	112
28.	CL & CO Based CIA Question Paper Format	113
29.	Sample Question Paper for First Continuous Assessment Examination	114
30.	CL & CO Based Semester Question Paper template	116
31.	Sample Question Paper for Semester Examination	117
32.	CL & CO Based Assessment method for Lab CIA Examination template	120

33.	CL & CO Based Assessment Method for Lab Semester Examination template	121
34.	Sample Question Paper Format for Lab CIA Examination	122
35.	Sample Question Paper Format for Lab Semester Examination	123
	Course Descriptors (Major Elective)	
36.	PPH2ME01 Astrophysics	50
37.	PPH2ME02 Geophysics	53
38.	PPH2ME03 Physics of Semiconductor Devices	57
39.	PPH3ME01 Advanced Mathematical Methods	75
40.	PPH3ME02 Communication Physics and Network Technology	79
41.	PPH3ME03 Medical Physics	83
	Course Descriptors (Inter Disciplinary)	
42.	PPH3ID01 Nanoscience	87
	Course Descriptors (Cross Disciplinary)	
43.	PPH2CD01 Climate Change and Energy Management	60
	Course Descriptors (Value Added)	
44.	PPH3VA01 MATLAB Programming	108

VISION AND MISSION OF THE COLLEGE

VISION

• Towards holistic formation of youth, grounded in excellence, through accompaniment to serve the humanity.

MISSION

- To provide inclusive education through an integral and holistic formative pedagogy.
- To promote skills that prepares them for the future.
- To kindle in young minds the spirit of social and environmental justice with a blend of academic excellence and empathy.
- To stimulate critical and conscientious scholarship leading to meaningful and innovative human Capital.

CORE VALUES

- Cura Personalis
- Pursuit of Excellence
- Moral Rectitude
- Social Equity
- Fostering solidarity
- Global Vision
- Spiritual Quotient

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO 1	Professional Skill Development
	To provide professional training and skill development to students in physical sciences, related disciplines and nurture them to become responsible persons in the society.
PEO 2	Core Competency Development
	To augment their core-competencies and knowledge levels in science, humanities and inter-disciplinary areas by imparting education of high standards and advanced technological tools with specialized research orientation.
PEO 3	Innovative Curriculum of Global Relevance
	To upgrade the curriculum periodically based on scientific advancements, innovations and societal relevance, so as to cater to the shifting global demands as cited by University Grants Commission, CSIR, etc.
PEO 4	Environmental Sensitivity and Sustainability
	To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to protect and safeguard the environment for a sustainable future by respecting ecological balance of the globe.
PEO 5	Ethical Principles and Holistic Development
	To promote ethical values and special focus on the holistic development of students to become proficient, skilled, competent and socially responsible people.
PEO 6	Accessibility and Academic Excellence
	To provide an accessible learning environment of excellence and equal opportunity to students, enabling them to develop their creativity, critical thinking, leadership, employability skills and making them competent for job market.

PROGRAMME OUTCOMES (POs)

PO 1	Disciplinary and inter-disciplinary knowledge for capacity building Students will acquire required knowledge of the laws governing nature through classroom teaching and experimenting in the laboratories. They will develop a sense of interdisciplinary approach to identify and resolve issues through project, seminars, field work, internships and industrial visits related to their curriculum.
PO 2	Skills for effective and efficient communication Students will be able to improve and enhance their communication skills such as reading, writing, listening and speaking. This will help them to express their ideas clearly and effectively and subsequently empower them to become agents of social change and hence pave the way for betterment of the society at large.
PO 3	Sense of inquiry and problem-solving skills Students will demonstrate the core competencies of their discipline through analytical reasoning, problem solving and research related skills, cooperation, team work, scientific reasoning and thinking that would make them emerge as entrepreneurs or administrative personnel.
PO 4	Skills to impact society Students will develop leadership, team spirit and other psychomotor skills which will help them to identify, approach and analyze the existing societal problems with an eye to look beyond gender, age, caste, creed or nationality and work for the emancipation and empowerment of humanity.
PO 5	Energy, Ethics and Environment They will be able to involve themselves in framing policies of social relevance and develop scientific temper to harness energy and work on alternate resources scientifically. They will be aware of the environmental issues and imbibe the spirit of ethical values in establishing a self-sustained environment for a healthy society.

PO 6	Self-directed and lifelong learning Through digital literacy, students will engage in self-paced and curious learning with necessary knowledge acquisition and hence develop motivation for a sustained lifelong learning capability. Students will accumulate knowledge by continuous activity centered learning and leverage the past knowledge to solve the problems in the future.
PO 7	National and international-priorities preferences and perspectives Students will be able to prioritize national and global issues with an aim to build a nation and an integrated world through contributions that imbibe the spirit of multicultural competency, creative thinking, critical analysis, political awareness and the much-needed awareness on international policies.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1	Acquire scientific temper leading to critical thinking and research motivation in Physics and its allied areas.
PSO 2	Gain knowledge and the skills to measure some of the properties of solid materials and understand the underlying principles governing the dynamics of rigid bodies.
PSO 3	Appreciate the principles of optics, electricity and magnetism and their applications in daily life.
PSO 4	Design and construct electronic circuits with computer interfacing for sophisticated analysis of material behavior and properties.
PSO 5	Comprehend algebraic concepts and advanced mathematical tools involved in the interpretation of various physical properties of materials.
PSO 6	Attain the required skills to interpret the Physics behind the phenomena occurring in nature and surroundings and hence apply them to enhance our life style.
PSO 7	Develop essential logical and analytical skills to approach a problem both quantitatively and qualitatively.

Correlation Rubrics

High	High Moderate		No Correlation	
3	2	1	0	

Mapping of PEOs with Vision and Mission

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
Vision	3	3	3	3	3	3
Mission	3	3	3	3	3	3

Mapping of POs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
PO1	3	3	3	3	3	3
PO2	3	3	3	3	3	3
PO3	3	3	3	3	3	3
PO4	3	3	3	3	3	3
PO5	3	3	3	3	2	3
PO6	3	2	3	2	3	3
PO7	3	3	3	3	3	2

Mapping of PSOs with PEOs

	PEO1	PEO2	PEO3	PEO4	PEO5	PEO6
PSO1	3	3	3	3	3	3
PSO2	3	3	3	3	3	3
PSO3	3	3	3	3	3	3
PSO4	3	3	2	3	3	3
PSO5	3	3	3	3	2	3
PSO6	3	3	3	3	3	3
PSO7	3	3	3	3	3	3

Mapping of PSOs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
PSO1	3	3	3	3	3	3	3
PSO2	3	3	3	3	3	3	3
PSO3	3	3	3	3	3	3	3
PSO4	3	2	3	3	3	3	3
PSO5	3	2	3	3	3	3	3
PSO6	3	3	3	3	3	3	3
PSO7	3	3	3	3	3	3	3

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI DEPARTMENT OF PHYSICS (2022 - Restructured curriculum) OVERALL COURSE STRUCTURE (M.Sc. Physics)

	Subject		T/L/P			
Sem	Code	Course Title		Category	Hours/	Credit
					Week	
Ι	PPH1MC01	Classical Mechanics	Т	MC	5	6
Ι	PPH1MC02	Electrodynamics	Т	MC	6	6
Ι	PPH1MC03	Mathematical Physics	Т	MC	6	6
Ι	PPH1MC04	Electronics I	Т	MC	5	6
Ι	PPH1MC05	Physics Practical I	L	MC	8	4
II	PPH2MC01	Statistical Mechanics	Т	MC	6	6
II	PPH2MC02	Electronics II	Т	MC	6	6
II	PPH2MC03	Research Methodology	Т	MC	3	2
II	PPH2MC04	Physics Practical II	L	MC	8	4
п		Based On Students' Preference Two	Т	ME	4	2
11		Courses Will Be Offered				
П		MOOCS [#] (Outside Class Hours,	Т	MO	2	2
11		Additional Credits)				
II		Life Skills [#]	Т	LS	2	1
п		Cross Disciplinary (Between Schools,	Т	CD	3	1
11		Purely Internal)				
II		Summer Internship (3 To 4 Weeks) [#]	-	SI	-	1
III	PPH3MC01	Quantum Mechanics I	Т	MC	6	7
III	PPH3MC02	Spectroscopy	Т	MC	6	7
III	PPH3MC03	Physical Practical III	L	MC	8	4
ш		Based on students' preference two	Т	ME	4	2
111		courses will be offered				
III	PPH3ID01	Nanoscience	Т	ID	6	3
III		Soft Skills [#]	Т	SK	2	1
III		Value Added Courses #	Т	VA	2	1
		LEAP#	-	SL	2	1
IV	PPH4MC01	Quantum Mechanics II	Т	MC	5	5
IV	PPH4MC02	Solid State Physics	Т	MC	5	5
IV	PPH4MC03	Nuclear Physics	Т	MC	5	5
IV	PPH4PJ01	Project	Р	PJ	15	5
					130	99

* 120 Contact hours and 10 Outside Class

[#]Outside Class

Major Elective (ME)

Sem	Code	Course	T/L	Categor	Hrs	Cr
		Title		У		
II	PPH2ME01	Astrophysics	Т	ME	4	2
II	PPH2ME02	Geophysics	Т	ME	4	2
II	PPH2ME03	Physics Of Semiconductor Devices	Т	ME	4	2
III	PPH3ME01	Advanced Mathematical Methods	Т	ME	4	2
III	PPH3ME02	Communication Physics and Network Technology	Т	ME	4	2
III	PPH3ME03	Medical Physics	Т	ME	4	2

Courses offered to other Departments

Sem	Code	Course	T/L	Categor	Hrs	Cr
		title		У		
II	PPH2CD01	Climate Change and Energy Management	Т	CD	1	3
III	PPH3VA01	MATLAB Programming	Т	VA	2	1

MC – Major Core; ME-Major Elective; ID-Inter-Disciplinary; MO-MOOC; LS-Life Skills; SK- Soft Skills;

CD-Cross Disciplinary; VA- Value Added; SI-Summer Internship;

SL-Service Learning; PJ-Project

PART	SEMESTER I	SEMESTER II	SEMESTER III	SEMESTER IV
МС	CLASSICAL MECHANICS (5H/6C)	STATISTICAL MECHANICS(6H/6C)	QUANTUM MECHANICS I (6H/7C)	QUANTUM MECHANICS II (5H/5C)
	ELECTRODYNAM ICS(6H/6C)	ELECTRONICS II (6H/6C)	SPECTROSCOPY (6H/7C)	SOLID STATE PHYSICS (5H/5C)
	MATHEMATICAL PHYSICS I(6H/6C)	RESEARCH METHODOLOGY(3H/2C)	PHYSICS PRACTICAL III (8H/4C)	NUCLEAR PHYSICS(5H/5C)
	ELECTRONICS I(5H/6C)	PHYSICS PRACTICAL II (8H/4C)		
	PHYSICS PRACTICAL I (8H/4C)			
ME		ASTROPHYSICS (4H/2C)	ADVANCED MATHEMATICAL METHODS(4H/2C)	
		GEOPHYSICS (4H/2C)	COMMUNICATION PHYSICS AND NETWORK TECHNOLOGY(4H/2C)	

		DUVSICS OF	MEDICAL DUVELOS(411/2C)	
		PHYSICS OF	MEDICAL PHYSICS(4H/2C)	
		SEMICONDUCTOR DEVICES		
		(4H/2C)		
ID			NANOSCIENCE(6H/3C)	
MOOC'S		(2H/2C) (Outside class hours,		
		additional credits)		
LS		2H(1C) (Outside class hours)		
SK			2H(1C) (Outside class hours)	
CD		CLIMATE CHANGE AND		
		ENERGY MANAGEMENT		
		(3H/1C) (Between schools,		
		purely internal)		
VA			2H(1C) (Outside class hours)	
SI		3 to 4 weeks (1C) (Outside class		
		hours)		
SL			LEAP (2H/1C) (Outside class hours)	
PJ				(15H/5C)
Hr/C	30H (28 C)	30H (23 C+2 C)	30 H (26C)	30 H (20C)

MC – Major Core; ME-Major Elective; ID-Inter-Disciplinary; MO-MOOC; LS-Life Skills; SK- Soft Skills;

CD-Cross Disciplinary;

VA- Value Added; SI-Summer Internship; SL-Service Learning; PJ - Project

15 | P a g e

COURSE DESCRIPTORS

Course Code	PPH1MC01				
Course Title	Classical Mechanics				
Credits	06				
Hours/Week	05				
Category	Major core (MC) – Theory				
Semester	Ι				
Regulation	2022				
 Course Overview This course deals with Lagrangian formulation for a system of particles and its application simple systems It extensively discusses the rigid body dynamics and physical quantities in non-inertial fram The modules of this course also describe the conservation theorems and cyclic coordin obtained from Lagrangian and Hamiltonian Formulations This course also includes the Eigen value equation for various oscillatory systems and disc the normal modes, normal coordinates It also includes the natural extension of Hamilton to Hamilton Jacobi formulation, Pois 					
 Course Objectives To introduce generalized coordinates and constraints with examples. To discuss mathematical formulation of rigid body dynamics To point out the relation between various conservation theorems and their associated symmetry properties. To demonstrate the use of Lagrange and Hamiltonian formulation through some applications To enable the students, apply the laws of classical mechanics to various physical systems 					
Prerequisites	Basic knowledge on mechanics and calculus				

UNIT	CONTENT	HOURS/	COs	COGNITIVE LEVEL
	001122112	WEEK		
	LAGRANGIAN FORMULATON		CO1,	
	Mechanics of a system of particles -		СО2,	
	Constraints - D'Alembert's principle -		СОЗ,	
I	Lagrange equations	13	CO4,	K1, K2, K3, K4, K5,
	- velocity dependent potentials -		CO5	K6
	applications - Variational principle -			
	Hamilton's principle - non-holonomic			
	systems - Conservation theorems and			
	symmetry properties. Two body central			
	force problem - equations of motion - first			
	integrals - classification of orbits - conditions			
	for closed orbits - Kepler's problem -			
	Laplace Runge Lenz vector - scattering in a			
	central force field - Lab frame - center of			
	mass frame transformation.			
	RIGID BODY DYNAMICS		CO1,	
	Kinematics - degrees of freedom - Euler		СО2,	
	angles - Euler's theorem on the motion of a		СОЗ,	
II	rigid body	13	СО4,	K1, K2, K3, K4, K5,
	- Rotations - finite and infinitesimal.		CO5	K6
	Angular momentum and kinetic energy -			
	Inertia tensor -			
	Principal axes - Euler's equations – Torque			
	free motion of a rigid body - Symmetric top			
	- Precession and nutation - applications –			
	Motion in rotational frames – centrifugal			
	and Coriolis forces		~~1	
	SMALL OSCILLATIONS			
	The eigenvalue equation - the principal axis		CO2,	
	transformation - free vibrations - normal	10	CO3,	
111	coordinates – Normal modes- linear	13	CO4,	к1, к2, к3, к4, к5,
	triatomic molecule – double pendulum –		cos	КÓ
	triple pendulum – triple parallel pendulum			

ſ	HAMILTONIAN FORMULATION		CO1,	ſ			
	Legendre transformation and Hamiltonian		CO2,				
	equations - Cyclic coordinates and		СОЗ,	1			
IV	conservation theorems - Hamiltonian		СО4,	K1, K2, K3, K4, K5,			
	equations from Variational principle:	13	CO5	K6			
	Application to various physical systems -			1			
	Canonical transformations - Poisson			1			
	brackets - equations of motion - conservation			1			
	theorems in Poisson bracket formulation			1			
	HAMILTON – JACOBI		CO1,				
	FORMULATION		CO2,	1			
V	Hamilton-Jacobi theory - Hamilton - Jacobi		СОЗ,	1			
	equation - Hamilton's principal function -	13	CO4,	K1, K2, K3, K4, K5,			
	free particle in Cartesian coordinates -		CO5	K6			
	central force in spherical polar coordinates -			1			
	application to harmonic oscillator problem –			1			
	Action- angle variables - simple harmonic			1			
	oscillator- Kepler's problem.			1			
Text Books			<u> </u>				
1. Gold	dstein, H., Poole, C., & Safko, J. (2011). Classi	ical mechani	ics (3rd e	d.). Pearson.			
2. Calk	cin, M. G. (1996). Lagrangian and Hamiltonian	n mechanics	. World S	scientific.			
3. Upa	dyaya, J. C. (2019). Classical mechanics (3rd e	ed.). Himala	ya Publisl	hing House.			
4. Rana	a, N. C., & Joag, P. S. (2017). Classical mecha	nics. McGra	ıw-Hill E	ducation.			
Suggested R	eadings						
1. Pana	at, P. V. (2005). Classical mechanics (5th ed.).	Alpha Scier	ice Intern	ational.			
2. Srin	ivasa Rao, K. N. (2003). Classical mechanics ((2nd ed.). Ur	niversities	s Press.			
3. Tho	rnton, S. T., & Marion, J. B. (2014). Classical	dynamics of	particles	and systems (5th ed.).			
Ceng	gage.						
4. Tayl	4. Taylor, J. R. (2005). Classical mechanics. University Science Books.						
5. Grei	5. Greiner, W. (2007). Classical mechanics: Point particles and relativity. Springer.						
6. Mor	6. Morin, D. (2008). Introduction to Classical mechanics: Problems and solutions. Cambridge						
Univ	versity Press.						
7. Wel	ls, D. A. (2005). Lagrangian dynamics (4th ed.). McGraw	Hill Educ	ation.			
8. Lim,	, S. C., Lai, C. H., & Kwek, L. C. (2020). Prob	elems and so	lutions or	n Mechanics (2nd ed.).			
Wor	ld Scientific.						
9. Gregory, R. D. (2008). Classical mechanics (8th ed.). Cambridge University Press.							

Web Resources

- 1. <u>https://youtube.com/playlist?list=PL5E4E56893588CBA8</u>.
- 2. <u>https://www.youtube.com/watch?v=pyX8kQ-JzHI</u>
- 3. https://bsc.hcverma.in/course/cm1

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO 1	Understand and recall laws of mechanics of single particle	K1, K2
CO 2	Ability to construct the Lagrangian and Hamiltonian of various holonomic and non-holonomic systems.	К3
CO 3	Calculate normal modes and normal co-ordinates of small oscillation	K4
CO 4	Analyze rigid body dynamics using Euler's equation.	К5
CO 5	Solve Harmonic oscillator, Kepler Problem using Hamilton's -Jacobi theory	K6

COURSE DESCRIPTOR

Course Code	PPH1MC02		
Course Title	Electrodynamics		
Credits	06		
Hours/Week	06		
Category	Major Core (MC) – Theory		
Semester	Ι		
Regulation	2022		
Course Overview			

Course Overview

- 1. This course aims to bridge the gap between the fundamental principles taught in electromagnetism and its practical application to specific fields such as materials, physics, and chemistry related to energy storage and harvesting.
- 2. It aims to provide students with an introduction to the principles and behaviors of dynamical electric and magnetic systems, and a theoretical foundation in classical field theory.
- 3. Students will examine the electrodynamics starting from the nature of electrical force up to the level of in-depth solutions of Maxwell equations.
- 4. It aims to study the dynamics of magnetized fluids and will explore the basic equations of MHD, the different types of waves and instabilities.
- 5. To study the transformation of fields between inertial frames

Course Objectives

- 1. To discuss the relation between Electrostatic field and Electrostatic Potential.
- 2. To make use of Ampere's law to calculate the magnetic fields.
- 3. To use Maxwell equations in analyzing the electromagnetic field due to time varying charge and current distribution.
- 4. To analyze charged particle dynamics and radiation from localized time varying electromagnetic sources.
- 5. To generalize the concepts of guided structures like transmission line, means of transporting energy or information, commonly used in power distribution and communication.
- 6. To explain Special Relativity, with reference to electrodynamics.

Prerequisites	Basic knowledge on Physics and Vector algebra

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	ELECTRIC AND MAGNETIC POTENTIAL		CO1, CO2,	
	Gauss's law and its applications, Electric		СОЗ,	
Ι	potential, Divergence and curl of E -	16	CO4,	
	Electric scalar potential - Poisson's and		CO5	K1, K2, K3, K4, K5, K6
	Laplace's equations, boundary value			
	problems - uniqueness theorems - potential			
	of a localized charge distribution - electric			
	potential – energy of a point charge			
	distribution - energy of a continuous charge			
	distribution - multi pole expansion:			
	monopole and dipole terms - electric dipole			
	moment - electric field of a dipole			
	Divergence and curl of B - Energy in the			
	magnetic fields due to current carrying			
	elements - Magnetic vector potential -			
	magnetic potential at any point due to			
	current carrying elements - multipole			
	expansion of the vector potential - magnetic			
	dipole moment - magnetic field of a dipole.			
	ELECTRODYNAMICS		CO1,	
	Biot-Savart law, Ampere's theorem,		СО2,	
	Maxwell's equation in free space and in		СОЗ,	
II	matter, displacement current, boundary	16	СО4,	
	conditions, Gauge transformations -		CO5	K1, K2, K3, K4, K5, K6
	Coulomb and Lorentz gauge - momentum -			
	Polarisation - monochromatic plane waves -			
	energy and momentum in electromagnetic			
	waves. Foynung's meorem - Propagation in			
	(i) normal incidence (ii) oblique incidence			
	laws of geometrical ontics - Fresnel's			
	equation - Brewster's angle - boundary			
	conditions - absorption and dispersion in			

	conductors - skin depth - reflection at a conducting surface - dispersion and			
	anomalous dispersion - Cauchy's formula			
	ELECTROMAGNETIC RADIATION		CO1,	
	Retarded scalar and vector potentials -		CO2,	
	Lienard - Wiechert potentials for a moving		СОЗ,	
III	point charge - electric and magnetic fields of	16	CO4,	
	a moving point charge, velocity and		CO5	K1, K2, K3, K4, K5, K6
	acceleration fields. Electric dipole radiation			
	- magnetic dipole radiation - radiation from			
	an arbitrary source - power radiated by a			
	point charge - Larmor formula - Lienard's			
	generalization of the Larmor formula -			
	radiation reaction - Abraham Lorentz			
	static and uniform cleatromagnetic fields			
	CUIDED WAVES AND MACHETO		CO1	
	GUIDED WAVES AND MAGNETO		CO1,	
	Essential conditions for guided waves		CO2,	
IV	TEM waves in coaxial cables -TE waves -		CO4	
1,	rectangular waveguide - electric and	15	CO5	K1, K2, K3, K4, K5, K6
	magnetic fields on the surface and inside	10	000	,,,,,
	rectangular waveguide - TE and TM waves			
	in rectangular waveguide - cut - off			
	frequency and wavelength - cylindrical			
	waveguides-energy flow and attenuation in			
	waveguides-cavity resonators-phase and			
	group velocity MHD - Dispersion relations			
	in plasma -Definitions - magneto			
	hydrodynamic equations - magnetic			
	diffusion - viscosity and pressure.			
	RELATIVISTIC		CO1,	
	ELECTRODYNAMICS		CO2,	
V	Four vectors - tensor algebra, Lorentz		СОЗ,	
	transformation - invariance of Maxwell's	15	CO4,	
	equations under Lorentz transformation -		005	K1, K2, K3, K4, K5, K6
	intensities electromagnetic field target			
	intensities - electromagnetic field tensor -			

	electromagnetic field invariants - covariant			
	form of Maxwell's equations -			
	electromagnetic energy - free space and			
	linear isotropic media; boundary conditions			
	on the fields at interfaces- momentum			
	tensor, conservation laws of			
	electrodynamics.			
Text Bo	oks			
1.	Griffiths, D. J. (2017). Introduction to Electrodynamics (4th ed.). Cambridge University Press.			
2.	Jackson, J. D. (2007). <i>Classical Electrodynamics</i> (3rd ed.). Wiley.			
3.	Gupta, S. L., Kumar, V., & Singh, S. P. (2017). <i>Electrodynamics</i> . Pragati.			
Suggest	ad Readings			
Juggest	Sinch D. N. (1001) Electromagnetic suggest and fields (5th ed.) McCrow Hill Education			
1.	Singii, K. N. (1991). Electromagnetic waves and fields (Stifed.). McGraw Hill Education.			
2.	2. Capri, A. Z., & Panat, P. V. (2002). <i>Introduction to Electrodynamics</i> (3rd ed.). Alpha Science.			
3.	Sarwate, V. V. (2018). <i>Electromagnetic fields and waves</i> (2nd ed.). New Age International			
	Publishers.			
Web Re	sources			
1.	https://web.njit.edu/~vitaly/621/notes621_old.pdf			
2.	https://nptel.ac.in/			
3.	https://himafi.fmipa.unej.ac.id/wp-content/uploads/sites/16/2018/09/Introduction-to-			
	Electrodinamic.pdf			
4.	4. https://ocw.mit.edu/courses/physics/8-07-electromagnetism-ii-fall-2012/lecture-notes/			
5.	https://www.freebookcentre.net/physics-books-download/Lecture-Notes-on-			
	<u>Electrodynamics.html</u>			
6.	https://www.worldcat.org/title/introduction-to-electrodynamics/oclc/1004614008			

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO 1	Relate potentials with fields, fields with respect to their sources and the dynamical relation between electric magnetic fields momentum and energy during EM transmission.	K1, K2
CO 2	Solve Maxwell's equations for different types of sources and media.	K3
CO 3	Explain the concept of four vectors, tensor analysis and their use in expressing the EM field tensors.	K4
CO 4	Analyze charged particle dynamics and radiation from localized time varying electromagnetic sources.	К5
CO 5	Design and construct wave guides of specific dimensions for their use in project/research work.	K6

COURSE DESCRIPTOR

Course Code	PPH1MC03
Course Title	Mathematical Physics
Credits	6
Hours/Week	6
Category	MC
Semester	Ι
Regulation	2022

Course Overview

- 1. This course introduces the various aspects of complex analysis and uses of residue theorem in real variable integrals
- 2. This course aims to introduce basic structure of linear vector space and various abstract operations.
- 3. This will enable them to bring out important special functions necessary for quantum mechanics and electrodynamics.
- 4. Will be introduced to the techniques of Fourier transform and its applications to various physical problems and basics of Laplace transform
- 5. This course will also discuss the various rules of probability, distribution functions that are relevant to statistical and quantum mechanics.

Course Objectives

- 1. To calculate the real variable integrals using residue theorem.
- 2. To familiarize and use the Linear vector space concepts to quantum mechanics and other relevant branches of physics.
- 3. To study exclusively the solution method for various special functions.
- 4. To apply Fourier transform techniques to various physical systems.
- 5. To apply the rules of probability and also use the distribution functions in the relevant physical process

Prerequisites	Basic knowledge of real variable calculus, differential equations

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	COMPLEX ANALYSIS Analytic function - Cauchy - Riemann equations - Laplace equation and harmonic function-Line integral in complex plane - Cauchy's theorem - multiply connected regions-Cauchy integral formula - Derivatives of analytic function - Taylor and Laurent series - Singularities - Residue theorem - Evaluation of real integrals, Application: Potential theory - (1) Electrostatic fields and complex potentials - Parallel plates, coaxial cylinders and an annular region (2) Heat problems - Parallel plates and coaxial cylinders	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	LINEAR VECTOR SPACE Basic concepts – examples of vector spaces – scalar product: orthogonality – Schmidt orthogonalization procedure – linear operators – Dual space: ket and bra notation –basis– orthogonal basis – change of basis – Isomorphism of vector spaces – projection operator –Eigen values and eigen functions – Direct sum and invariant subspaces – orthogonal transformations and rotation.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	SPECIAL FUNCTIONS Gamma and Beta functions - Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Associated Legendre function - Recurrence relations - spherical harmonics - Graphs of Legendre functions.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

26 | P a g e

	FOURIER TRANSFORM AND		CO1				
	I ADI ACE TRANSFORM		CO1,				
	Fourier transform and its inverse – Fourier		CO2,				
IV	transform of elementary functions - Transform		CO4				
1.4	of Gaussian function and Dirac delta function	15	CO_{4}	K1 K2 K3 K4 K5 K6			
	-Fourier transform of derivatives - Cosine and	10	005	11, 12, 13, 11, 13, 110			
	sine transforms - Convolution theorem						
	Application: Diffusion equation: Flow of heat						
	in an infinite and in a semi - infinite medium -						
	Wave equation: Vibration of an infinite string						
	and of a semi - infinite string - Laplace						
	equation: Potential problem in a semi - infinite						
	strip Laplace transform and its inverse -						
	Transforms of derivatives and integrals –						
	Differentiation and integration of transforms -						
	Transforms of Heavy side and Dirac delta						
	functions.						
	PROBABILITY THEORY		CO1,				
	Definitions - Laws of probability - Mean,		CO2,				
V	variance - Standard deviation -Binomial		СОЗ,				
	distribution - Normal distribution -Poisson	15	CO4,				
	distribution - Moments of distribution -		CO5	K1, K2, K3, K4, K5, K6			
	Recurrence relations - Sampling of variables -						
	Variance - The t - distribution - The Chi -						
	Square distribution.						
Text Boo	ks						
1.]	Kreyszig, E. (2015). Advanced Engineering Math	hematics (1	0th ed.).	Wiley.			
2. 1	Dass, H. K., & Verma, R. (2022). Mathematical	Physics (8t	h ed.). S	. Chand.			
3.]	Dass, T., & Sharma, S. K. (1998). Mathematical	methods in	Classic	al and Quantum Physics.			
1	University Press.						
4.]	Bell, W. W. (2004). Special functions for Scienti	sts and Eng	ineers.	Dover.			
Suggested Readings							
1. Arfken, G. B., Weber, H., & Harris, F. E. (2013). Mathematical methods for Physicists: A							
(comprehensive guide (7th ed.). Academic Press.						
2. 1	2. Balakrishnan, V. (2020). Mathematical Physics: Applications and Problems. Springer.						
3.	Boas, M. L. (2006). <i>Mathematical methods in the</i>	e Physical S	sciences	(3rd ed.). Wiley.			
4.]	Kiley, K. F., Hobson, M. P., & Bence, S. J. (2018	8). Mathem	atical m	ethods for Physics and			
	Engineering (3rd ed.). Cambridge University Press.						

Web Resources

- 1. <u>https://www.youtube.com/watch?v=b5VUnapu-</u> qs&list=PLbMVogVj5nJRhl_6TUGChpnt2Lg0AZvZu
- 2. <u>https://www.youtube.com/watch?v=9MTqD7yxHWg&list=PLq-</u> <u>Gm0yRYwThklRVGuMC01Gl7m1YSv_qn</u>
- 3. <u>https://www.youtube.com/watch?v=9MTqD7yxHWg&list=PLq-Gm0yRYwThklRVGuMC01Gl7m1YSv_qn</u>

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO 1	Acquire the skill to evaluate various real variable integrals using residue theorem	K1, K2
CO 2	Ability to distinguish between the real variable analysis and complex analysis	К3
CO 3	Appreciate the use of Linear vector space into quantum mechanics and other relevant areas of physics	K4
CO 4	Apply the probability rules to various statistical process and determine the relevant distribution function for a given statistical process.	К5
CO 5	Solve problems using Fourier transform techniques which appears in to various branches of science	K6

Course Code	PPH1MC04	
Course Title	Electronics I	
Credits	6	
Hours/Week	5	
Category	MC	
Semester	Ι	
Regulation	2022	
 This course to obtain electrical of Students v application Students v Students v An introo computati Importance 	se deals with the types of network theorems used in circuit analysis. Students will learn the equivalent circuit using Thevenin's theorem and Norton's theorem and apply in circuit analysis. will gain knowledge on semiconductor devices like JFET, MOSFET, UJT, SCR and their ns. will be introduced to the various applications of logic gates. duction to operational amplifiers and the applications of OPAMPs for analog on, filters and waveform generators will be given. the of D/A and A/D conversions using OPAMPs will be discussed.	
 Course Objectives To become familiar with the network theorems employed in circuit analysis. To understand and appreciate the operation and applications of semiconductor devices. To learn the basic techniques of building digital circuits and the basic concepts used in th construction of digital systems. To develop skills to understand and construct circuits using operational amplifiers. Comprehend D/A and A/D converters and their applications. 		
Prerequisites	Fundamental knowledge in Basic Electronics	

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	NETWORK THEOREMS Ohm's law – Series circuit – Parallel circuits – Series-Parallel circuits – Star-Delta conversion – Nodal analysis – Mesh Analysis – Kirchhoff's current law – Kirchhoff's voltage law – Superposition Theorem – Thevenin's Theorem – Norton's Theorem – Maximum Power Transfer theorem.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	SEMICONDUCTOR DEVICES Junction Field Effect Transistor – Construction and Characteristics – JFET as an amplifier – JFET biasing – JFET applications – MOSFET - depletion and enhancement modes - MOSFETS as switches and resistors – Unijunction Transistor - UJT Saw tooth wave Generator – SCR – constructions and characteristics – SCR applications – Triac – Diac – Applications of Triac and Diac.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	LOGIC CIRCUITS AND MEMORIES Encoders and Decoders – Four bit binary decoder - BCD to 7 segment decoder – Multiplexers – Demultiplexers – Applications of multiplexers and Demultiplexers - Flip-flops: RS, D- type, JK and Master - Slave Flip-flop – Registers - Shift right, shift left registers - Counters - Asynchronous - Synchronous - Modulus counters – BCD Counter - ring counter – Johnson's ring Counter. Semiconductor memories–ROM, EPROM, EEPROM – RAM – Static and Dynamic RAM.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

30 | P a g e

			~~1		
	OPERATIONAL AMPLIFIER AND		COI,		
	APPLICATIONS		CO2,		
	Operational Amplifiers - Ideal Op-Amp -		CO3,		
IV	CMRR - comparator - inverting, non-		CO4,	K1, K2, K3, K4, K5, K6	
	inverting, summing and difference,	13	CO5		
	logarithmic, antilogarithmic amplifiers -				
	integrator and differentiator - Solving				
	simultaneous and differential equations -				
	high, low and band pass filters –				
	instrumentation amplifier - Phase shift				
	oscillator - Wein Bridge oscillator - Wave				
	generators				
	D/A AND A/D CONVERTERS		CO1,		
	Introduction – Binary weighted D/A		CO2,		
V	converter - R/2R Ladder D/A converter -		СОЗ,		
	D/A accuracy and resolution - DAC 808 -	13	CO4,	K1, K2, K3, K4, K5, K6	
	A/D converter - simultaneous conversion -		CO5		
	counter method - continuous method -				
	Successive approximation - dual slope A/D				
	converters – A/D accuracy and resolution –				
	ADC0804.				
Text Books					
1. Boylestad, R. L., & Nashelsky, L. (2021). Electronic devices and circuit theory (11th ed.).					
Р	'earson.				
2. 0	Brob, B., & Schultz, M. R. (2003). Basic Electr	<i>conics</i> (9th e	d.). McC	Graw Hill Education.	

- 3. Chattopadhyay, D., & Rakshit, P. C. (2020). *Electronics: Fundamentals and applications* (16th ed.). New Age International.
- 4. Dube, D. C. (2012). *Electronics: Circuits and analysis* (2nd ed.). Narosa.
- 5. Taub, H., & Schilling, D. (2008). Digital Integrated Electronics. McGraw Hill Education.
- 6. Millman, J., Halkias, C. C., & Parikh, C. D. (2017). *Integrated Electronics: Analog and digital circuits and systems* (2nd ed.). McGraw Hill Education.
- 7. Gayakwad, R. A. (2015). Op-amps and linear integrated circuits (4th ed.). Pearson.

Suggested Readings

- 1. Mithal, G. K., & Mithal, R. (1991). *Basic electronic devices and circuits* (14th ed.). McGraw Hill Education.
- 2. Leach, D. P., Malvino, A. P., & Saha, G. (2014). *Digital principles and applications* (8th ed.). McGraw Hill Education.
- 3. Choudhury, D. R., & Jain, S. B. (2018). *Linear integrated circuits* (5th ed.). New Age International Publishers.
- 4. Coughlin, R. F., & Driscoll, F. F. (2001). *Operational amplifiers and linear integrated circuits* (6th ed.). Prentice Hall of India.

Web Resources

- 1. <u>https://nptel.ac.in/courses/108/105/108105159/</u>
- 2. <u>https://nptel.ac.in/courses/108/108/108108122/</u>
- 3. https://nptel.ac.in/courses/108/105/108105132/
- 4. https://nptel.ac.in/courses/108/108/108108114/

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO 1	Identify the use of a few semiconductor devices, logic circuits and operational amplifiers.	K1, K2
CO 2	Construct logic circuits and illustrate the usage of combinational circuits.	К3
CO 3	Compare the working of encoders and decoders, multiplexers and demultiplexers, A/D and D/A converters.	К4
CO 4	Develop circuits to solve equations using operational amplifiers and design multiplexers, demultiplexers, counters and memory registers using logic circuits.	К5
CO 5	Design and construct electrical/electronic circuits for various applications.	K6

COURSE DESCRIPTOR

Course Code	PPH1MC05			
Course Title	Physics Practical – I			
Credits	4			
Hours/Week	8			
Category	Major Core (MC) – Practical			
Semester	Ι			
Regulation	2022			
Course Overview 1. This cour quantities 2. It helps str 3. Students v 4. Students v groups.	rse highlights the importance of having hands-on experience to measure physical and use practical methods to understand theoretical concepts. udents to acquire experimental abilities, which are essential for physics course. vill be able to use various components and equipment. will also be able to work efficiently and safely in a laboratory, both individually and in			
 Course Objectives Determine elastic constants, spectroscopic constants and Stefan's constant using appropriate experimental setup. Verify the inverse square law and compute the absorption coefficient using GM counter. Implement the usage of transistors, diodes and logic gates. Understand the application of combinational logic design in registers and counters. Explore the basic functionality and applications of operational amplifiers and 555 timer. 				
Prerequisites	Basic Knowledge on Usage of Scientific Apparatus			

No	List of experiments	Hours Per week Per student Per Expt.	Cos	Cognitiv e levels
1.	Cornu's method – Young's modulus and Poisson's ratio – Elliptic Fringes			
2.	Iodine absorption spectrum-Spectroscopic constants			
3.	Susceptibility - Quincke's method		CO1,	K1,
4.	Black body radiation - Stefan's constant	0	CO2, CO3,	K2, K3,
5.	GM counter – Inverse square law and absorption coefficient	8	CO4, CO5	K4, K5,
6.	Ultrasonic Interferometer			KO
7.	Thermistor – Band gap energy			
8.	Transistor Amplifier-RC coupled			
9.	Power Amplifier –IC			
10.	Design of Gates-transistor (NOT, AND, OR, NAND)			
11.	A/D converter –Parallel conversion using LM339			
12.	Combinational logic circuit design			
13.	7 segment display-2 digit optically controlled counter			
14.	Shift register, Ring counter and Johnson twisted ring counter			
15.	IC regulated power supply			
16.	FET characteristics			

17.	555 Timer - Astable Multivibrator		
18.	Op -Amp 741 -Introduction (basic functionality)		
19.	Op -Amp 741 -Solving Simultaneous Equations		
20.	PLL -remote control applications		
21.	UJT characteristics and relaxation oscillator		
22.	SCR Characteristics and angle of conduction		
23.	Encoders and Decoders		
24.	Multiplexer and Demultiplexer		
25.	Arithmetic/Logic unit – IC74181		

The staff in - charge shall select any 14 from this list. The remaining 2 experiments can be chosen from this list or can be new experiments included by the staff in - charge with prior approval of the department.

Suggested Readings

- 1. Singh, S. P. (1999). Advanced Practical Physics (23rd ed.). Pragati Prakashan.
- Nelkon, M., & Ogborn, J. M. (1978). Advanced level Practical Physics (4th ed.). Pearson Education.
- Chattopadhyay, D., & Rakshit, P. C. (2017). An Advanced course in Practical Physics (10th ed.). New Central Book Agency.
- 4. Squires, G. L. (2001). Practical Physics (4th ed.). Cambridge University Press.
Web Resources

- 1. https://vlab.amrita.edu/?sub=1&brch=282&sim=1005&cnt=1
- 2. https://vlab.amrita.edu/?sub=1&brch=192&sim=854&cnt=1
- 3. http://vlabs.iitkgp.ac.in/dec/exp1/index.html
- 4. https://de-iitr.vlabs.ac.in/exp/4bit-sipo-shift-register/theory.html
- 5. http://vlabs.iitkgp.ac.in/tcad/fet/index.html
- 6. <u>http://vlabs.iitb.ac.in/bootcamp/labs/ic/exp9/exp/theory.php</u>
- 7. https://vlab.amrita.edu/?sub=3&brch=60&sim=1120&cnt=2171
- 8. <u>http://he-coep.vlabs.ac.in/Experiment5/Theory.html</u>
- 9. https://de-iitr.vlabs.ac.in/exp/multiplexer-demultiplexer/theory.html

COs	CO Description	Cognitive Level
CO 1	Define the objective of the experiment and explain the various parameters in the formula for determining a material's physical property.	K1, K2
CO 2	Construct the experimental setup and carry out the experiment	К3
CO 3	Make a list of the observations and repeat the experiment to compute the physical quantity using the appropriate formula.	K4
CO 4	Interpret and analyze the obtained result and sketch the variations wherever required.	К5
CO 5	Design and develop electronic/electrical circuits for use in project work or in device construction.	K6

Course Code	PPH2MC01			
Course Title	Statistical Mechanics			
Credits	6			
Hours/Week	6			
Category	MC			
Semester	II			
Regulation	2022			
 This cours This cours This will e Will be in This cours attempt to 	se aims to introduce different ensemble concept and obtain solutions to simple systems. enable them to appreciate the principles and applications of quantum statistics. troduced to the role and estimation of fluctuation in statistical mechanics. se will also provide basic rules for classification of phase transitions and a preliminary understand non-equilibrium phenomena.			
 Course Objectives To estimate and use the statistical concept of entropy and relate its partial derivative with thermodynamical parameters. To understand the concept of ensemble, ensemble averages and partition function and apply them to classical ideal gas and system of harmonic oscillators. To study exclusively when and how to use Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. To distinguish between classical and quantum statistics and the need to use them for explaining some exotic phenomena in both BE and FD statistics. To appreciate and use the concept of fluctuation in statistics. Identify those parameters that are used to allocatify those parameters that are used to allocatify those parameters. 				
Prerequisites	Basic ideas on the laws of thermodynamics and relations between thermodynamic variables.			

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	RELATION BETWEEN STATISTICAL MECHANICSMECHANICSANDTHERMODYNAMICSMacro and microstates- connection between thermodynamics and statistical mechanics- phase space and trajectories –quantization of phase space - ensemble and ensemble averages- equations of motion and Liouville's theorem- microcanonical ensemble (MCE) – ideal gas in MCE – Gibb's paradox – Sackur-Tetrode equation- Entropy and probability- classical limit- symmetry of wave function (distinguishable and indistinguishable particles) – effect of symmetry on counting - distribution function for Maxwell-Boltzmann(MB), Bose-Einstein(BE) and Eermi –Dirac (ED)	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
	statistics.			
Π	CANONICALANDGRANDCANONICAL ENSEMBLESSystem in contact with a heatreservoirMost probable distribution inCE- canonical partition function andHelmholtzfreeenergy-relation tothermodynamic variables- classical idealgasand harmonicoscillatorgas and harmonicoscillatorin CE -calculation of statistical quantities- equi-partition theorem-two level systemconcept of negative temperature- systemwith internal degreesof freedompartition functionsystem in contact with a particle-energyreservoir-Most probable distribution inGCEgrand canonical partition function	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	and Gibb's free energy- relation to thermodynamic variables – classical ideal gas and harmonic oscillator in GCE -			
	quantum mechanical ensemble theory.			
	BOSE – EINSTEIN STATISTICS:		CO1,	
	Bose-Einstein Distribution law – black body		СО2,	
	radiation spectra – photon gas- Planck's		CO3,	K1, K2, K3, K4, K5, K6
	distribution law, Rayleigh-Jean's law,	16	CO4,	
	wein's displacement law, Stefan's law-		COS	
	specific heat Degeneracy and Bose			
	Einstein condensation- Thermodynamic			
	properties of an ideal Bose-Einstein gas-			
	Liquid helium – super fluidity- fountain			
	effect - mechano-caloric effect.			
	FERMI-DIRAC STATISTICS:		CO1,	
	Ideal Fermi gas - Fermi Dirac distribution-		СО2,	
	law- thermodynamic properties of Fermi		СОЗ,	K1, K2, K3, K4, K5, K6
IV	gas: completely degenerate, degenerate and		СО4,	
	slightly degenerate – electronic heat	15	CO5	
	capacity –electrons in metals — Thermionic			
	emission – Paun paramagnetic			
	and relativistic limits – Chandrasekhar limit			
	– nuclear matter.			
	FLUCTUATIONS AND PHASE		CO1,	
	TRANSITIONS:		CO2,	
V	Mean squared deviation- energy		СОЗ,	K1, K2, K3, K4, K5, K6
	fluctuation in canonical ensemble – number	15	СО4,	
	fluctuation in grand canonical ensemble-		CO5	
	Random walk and Brownian motion- First			
	and second order Phase transition- Ising			
	model: one dimensional Ising model-			
	introduction to non - equilibrium processes			
	- diffusion equation.			

Text Books Agarwal, B. K., & Eisner, M. (2011). *Statistical mechanics* (8th ed.). New Age International. Pathria, R. K., & Beale, P. (2021). *Statistical mechanics* (4th ed.). Elsevier. Greiner, W., Neise, L., & Stöcker, H. (1995). *Thermodynamics and statistical mechanics* (4th ed.). Springer. Huang, K. (2009). *Introduction to Statistical Physics* (2nd ed.). CRC Press.

Suggested Readings

- 1. Reif, F. (2010). Fundamentals of statistical and thermal physics (4th ed.). Waveland Press.
- 2. Landau, L. D., & Lifshitz, E. (1980). Statistical physics (3rd ed.). Elsevier.
- 3. Hill, T. L. (1987). Statistical mechanics: Principles and selected applications (4th ed.). Dover.
- 4. Chandler, D. (1987). *Introduction to modern statistical mechanics* (6th ed.). Oxford University Press.

Web Resources

- 1. <u>https://www.youtube.com/watch?v=-0S0ScEOH5w</u>
- 2. <u>https://www.youtube.com/watch?v=XIXQ38JnF0k</u>
- 3. <u>https://www.youtube.com/watch?v=SjTfNFso4mE</u>
- 4. <u>https://www.youtube.com/watch?v=CefOcjpUP-A</u>
- 5. https://hepweb.ucsd.edu/ph110b/110b_notes/node93.html
- 6. https://slideplayer.com/slide/14328790/
- 7. https://www.slideserve.com/tyne/black-body-radiation
- 8. http://web.mit.edu/8.333/www/lectures/superfluidity/SuperfluidiHe.html
- 9. https://web.pa.msu.edu/courses/2019spring/PHY451/Experiments/superfluidity.html
- 10. <u>https://www.studocu.com/en/document/old-dominion-university/elements-of-astrophysics/lecture-notes/white-dwarfs-lecture-notes/1161750/view</u>
- 11. <u>https://uwaterloo.ca/chem13-news-magazine/december-2015-january-2016/feature/negative-temperature</u>

COs	CO Description	Cognitive Level
CO 1	Acquire the skill to evaluate various statistical parameters in different ensembles.	K1, K2
CO 2	Ability to distinguish between statistics of distinguishable and indistinguishable particles and use it on such systems where there is no explanation available in classical theories.	К3
CO 3	Appreciate the use of statistical tools in establishing thermodynamic laws of simple thermo dynamical systems.	K4
CO 4	Apply the statistical tool of averages and fluctuations for a better understanding of condensed matter.	К5
CO 5	Solve problems using statistical mechanics and identify their success and limitations.	K6

Course Code	PPH2MC02
Course Title	Electronics II
Credits	6
Hours/Week	6
Category	МС
Semester	Ш
Regulation	2022
 This course and assement 2. Implement detail. I/O operate 4. The archite be discussed 5. Introduction covered in 	se deals with the architecture of microprocessor 8086, the different addressing modes ibly language programming. tation of procedures, macros and interrupts in microprocessor 8086 will be dealt in tion and interfacing I/O devices to microprocessor 8086 will be covered. Execture, addressing modes, timer and counter programming of microcontroller 8051 will sed. on to Python, data types, variables, simple functions, math, and flow control will be n this course.
Course Objectives 1. To unders 8051. 2. To write microcont	stand the architecture and instruction set of microprocessor 8086 and microcontroller assembly language programs using the instruction set for microprocessor 8086 and troller 8051.
3. To explain the interfacing between the peripherals and microprocessor 8086 & microcontr 8051.	
 To develop skills to perform timer/counter programming using microcontroller 805 appreciate embedded system concepts. 	
 Learn the data types, simple functions, math and flow control in Python and gain competence and executing programs in Python. 	

Prerequisites Basic knowledge in Physics and Electronics

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	INTEL 8086 Architecture, Instruction set and Introduction to Macro Assembler (ASM86) CPU architecture - addressing modes - instruction formats - instruction set - execution timing – Assembler directives – assembler operators - assembly process - translation of assembler instructions - simple programs.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	MODULAR PROGRAMMING AND MULTIPROGRAMMING Linking and relocation - access to external identifiers – procedures - interrupts and their routines - macros - process management and IRMX86 - semaphore operations - common procedure sharing.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	I/O CONSIDERATION, INTERRUPTS AND SYSTEM BUS STRUCTURE Programmed I/O - Interrupt I/O - block transfer and DMA - basic 8086 bus configuration - minimum and maximum modes - system bus timings - interrupt priority management - single and multiple 8259. Applications: Assembly language programs involving arithmetic and logical operations - use of subroutines - manipulating arrays - solving equations - keys and LEDs interface –delays - interfacing D/A and D/A converters - generation of waveforms - simulation of counter and successive approximation A/D converters.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

			001	
	8051 ARCHITECTURE AND			
	PROGRAMINIING		CO2,	
	Architecture – memory organization –		CO3,	
IV	addressing modes – instruction set – limers		CO4,	K1, K2, K3, K4, K5, K6
	- Interrupts - I/O ports, Interfacing I/O	15	CO5	
	Devices – Serial Communication -			
	Assembly language programming –			
	Arithmetic Instructions – Logical			
	Instructions –Single bit Instructions.			
	Applications: Timer Counter Programming			
	- Serial Communication Programming -			
	Interrupt Programming			
	PYTHON PROGRAMMING		CO1,	
	Introduction to Python programming -		CO2,	
V	Python interpreter and interactive mode		СОЗ,	
	programming - values and types - data	15	CO4,	K1, K2, K3, K4, K5, K6
	types – variables – statements in python –		CO5	
	operators – precedence of operators –			
	conditional statement – iteration – loop			
	control statements - python functions –			
	types of functions – list and tuples – Basic			
	programs – Application of Python into			
	physics problems.			
Text Boo	zs			
1 F	Hall D V (2017) Microprocessors and interfu	acina Prog	rammina	and hardware (2nd ed)
1. 1	McGraw-Hill Education	<i>ieing</i> . 170gi	amming	, and naraware (2nd ed.).
2 4	Xamthane A N & Kamthane A A (2017) F	Proorammin	o and nr	ablem solving with Python(2nd
2.1	ed.) McGraw Hill Education	. 08. 4	5 ana pr	
3.1	iu Y. C. & Gibson G. A. (2006) Microcom	mter system	s. The 8	086/8088 family · Architecture
5. I	programming and design (2nd ed.) Prentice H	all	<i>ine</i> o	
4 N	Mazidi M A Mazidi I S & McKinley R C) (2011) <i>TV</i>	ne 8051	Microcontroller and embedded
4. Intaziui, IVI. A., Intaziui, J. S., & Interimety, R. D. (2011). The obst Microcontroller and embedded				
5 1	Prodko M (1999) Programming and customiz	ing the 805	n. Microc	controllar (3rd ed.) McGraw
J. 1 I	Heako, M. (1999). 1 rogramming and customiz	ing the 0051	microc	oniroller (sid ed.). Weblaw
	The Lowcard, R. (2010) Puthon programming. Usin	a nrohlom a	olvina a	nnroach Oxford University
0. 1	marga, K. (2017). 1 ymon programming. Usin	g problem s	nving up	oprouch. Oxford Oniversity

7. Vijayendran, V. (2009). Fundamentals of microprocessor 8086 (3rd ed.). Viswanathan Printers.

Suggested Readings

- 1. Brey, B. B. (2008). *The intel microprocessors: Architecture, programming and interfacing* (8th ed.). Pearson.
- 2. Uffenbeck, J. (1987). *The 8086/8088 Microprocessors: Design, programming and interfacing*. Pearson.
- 3. Triebel, W. A., & Singh, A. (2003). *The 8088/8086 Microprocessors: Programming, interfacing, software, hardware and applications* (4th ed.). Pearson.
- 4. Kamal, R. (2011). *Microcontrollers: Architecture, programming, interfacing and system design*(2nd ed.). Pearson.
- 5. Mandal, S. K. (2011). *Microprocessors and Microcontrollers: Architecture, programming and interfacing using 8085, 8086 and 8051* (6th ed.). McGraw Hill Education.
- 6. Thareja, R. (2019). *Python programming: Using problem solving approach*. Oxford University Press.

Web Resources

- 1. https:nptel.ac.in/courses/108/103/108103157/
- 2. https://nptel.ac.in/courses/108/105/108105102/
- 3. https:nptel.ac.in/courses/106/106/106106212/

COs	CO Description	Cognitive Level
CO 1	Explain the architecture and addressing modes of microprocessor 8086 and microcontroller 8051.	K1, K2
CO 2	Apply knowledge and demonstrate programming using the various modes of addressing in microprocessor 8086 and microcontroller 8051.	К3
CO 3	Select the appropriate arithmetic and logical instructions for assembly language programming using microprocessor 8086 and microcontroller 8051.	K4
CO 4	Design and interface external devices to microprocessor 8086 & microcontroller 8051 and implement the appropriate programming.	К5
CO 5	Develop programs in Python using arithmetic & logical operators and solve problems in numerical methods.	K6

Course Code	PPH2MC03
Course Title	Research Methodology
Credits	2
Hours/Week	3
Category	Major Core (MC) – Theory
Semester	Π
Regulation	2022

Course Overview

- 1. The aim of this course is to develop students' knowledge and understanding of the role and conduct of quantitative and qualitative research methods.
- 2. The course objective is to learn how to plan, design and conduct experiments efficiently and effectively, and analyze the resulting data to obtain objective conclusions.
- 3. Students will be exposed to the concepts of the major components of a research framework, namely problem definition, research design, data collection, ethical research concerns, report writing and submission.
- 4. The course equips students with the skills to review and conduct methodologically sound research as a part of their professional work that will enhance the writing of a research article.
- 5. The course introduces the ethical principles, challenges and the elements of quantitative analysis such as numerical methods or any mixed method approaches.

Course Objectives

- 1. To identify and discuss the role and importance of the method of research.
- 2. To apply the experimental techniques to analyze the research problems.
- 3. To discuss the concepts and procedures of sampling, data collection, analysis and reporting.
- 4. To develop the ability to apply theoretical concepts while working on a research project.
- 5. To develop advanced critical thinking skills to write research papers.
- 6. To understand the Research ethics for good scientific writing.

Prerequisites Basic knowledge on Physics and Research

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	METHODS OF RESEARCH: Objectives and motivation in research – types of research – research and scientific method – research problem – selecting the problem – techniques involved in defining the problem – research design – literature survey – data collection – the use of computers in research – access using internet web tools – e-mails – e-journals – uses of research engines – impact and usefulness of the research problem.	8	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Π	EXPERIMENTAL TECHNIQUES AND DATA ANALYSIS: Data interpretation and analysis; Precision and accuracy, error analysis, propagation of errors, least squares fitting, linear and nonlinear curve fitting, chi-square test; Transducers (temperature, pressure/vacuum, magnetic field, vibration, optical, and particle detectors), measurement and control.	8	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	NUMERICAL METHODS: Solution of Nonlinear equations: Newton - Raphson method – Regula Falsi method Solutions of system of linear equations: Gauss elimination method with and without pivoting - Gauss - Siedel iterative method Solution of ordinary differential equations: Euler method - Euler modified method – Runge - Kutta method (2nd order)	8	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	SCIENTIFIC WRITING:		CO1,		
	Introduction to Scientific Writing -		CO2,		
	structuring your article - characteristics of		CO3,		
IV	effective titles – key words and abstract –		CO4,		
	introduction – methods – results and	8	CO5	K1, K2, K3, K4, K5, K6	
	discussion – conclusion – references – good				
	citation behavior – time line of research.				
	RESEARCH ETHICS:		CO1.		
	Introduction to Research Ethics and		CO2,		
v	Academic Honesty - Academic Integrity:		CO3.		
	Research Misconduct / Fabrication /	7	CO4.		
	Unethical Practices - Literature Review and		CO5	K1, K2, K3, K4, K5, K6	
	Proper Use of E-Resources - Writing				
	Quality Academic Publications: Challenges				
	to avoid plagiarism - Plagiarism				
	Policies, Penalties and Consequences.				
Text Boo	×8				
1. A	Anderson, V., Durston, B. H., & Poole, M. (199	94). Thesis a	nd assig	mment writing. Wiley.	
2. R	ajammal, & Devadas, P. (1982). Handbook of	methodolog	ty of rese	earch. Sri Ramakrishna mission	
v	idyalaya press.				
3. K	Kothari, C. R. (2019). Research methodology: 1	Methods and	l techniq	ues (4th ed.). New Age	
I	nternational Publishers.		_		
4. K	4. Kumar, R. (2018). Research methodology: A step by step guide for beginners (5th ed.). Sage				
Р	Publications.				
5. V	5. Willard, H. H., Merrit, L. L., Dean, J. A., & Settle, F. A. (2001). Instrumental methods of				
а	nalysis(7th ed.). Wadsworth Publishing.				
Suggestee	l Readings				
1. N	Jakra, B. C., & Chaudhry, K. K. (2016). Instru	mentation n	ieasuren	nent and analysis (3rd ed.).	
Ν	McGraw Hill Education.				
2. E	2. Bhattacharya, S. K., & Chatterjee, S. (2017). Industrial electronics and control. McGraw Hill				
Education.					
3. R	3. Rao, S. B., & Shantha, C. K. (2004). Numerical methods (5th ed.). Universities Press.				
4. S	4. Sastry, S. S. (2012). Introductory methods of numerical analysis (5th ed.). PHI Learning.				
5. V	5. Venkataraman, M. K. (1999). Numerical methods in science and engineering (5th ed.). National				
p	publishing company.				
6. Iyengar S.R.K. Lecture Series on Numerical methods and computation [NPTEL series].					
Γ	Department of Physics, IITD.				

Web Resources

- 1. <u>Research Methodology for Beginners || Research Methodology Lecture YouTube</u>
- 2. Doctoral Seminar in Research Methods I | Sloan School of Management | MIT OpenCourseWare
- 3. Introduction to Research Methodology YouTube
- 4. Using MITx to Teach Qualitative Research Methodology | Open Learning
- 5. Research Methodology Course (nptel.ac.in)

COs	CO Description	Cognitive Level
CO 1	Identify and discuss the role and importance of the method of research.	K1, K2
CO 2	Plan and prepare research problems following ethical guidelines.	К3
CO 3	Select the appropriate experimental techniques to analyze the research problems. Develop the ability to apply the methods while working on a research project.	K4
CO 4	Summarize the results of the experiment to disseminate the knowledge acquired.	К5
CO 5	Write a research article by systematic review of literature.	K6

Course Code	PPH2ME01		
Course Title	Astrophysics		
Credits	02		
Hours/Week	04		
Category	Major Elective (ME) – Theory		
Semester	ΙΙ		
Regulation	2022		
 This cours In this cours In this cours It provides It provides This cours In this cours In this cours 	se gives detailed discussion on various astronomical coordinate systems. urse, the magnitude systems, different techniques on stellar distance measurements are s the underlying physical principles on Star formation and life cycle. se discusses the interesting features of sun, sunspots and solar cycle and Helioseismology. urse, the various types of galaxies, significance of Hubble's law and its consequences are		
 Course Objectives To develop the necessary mathematical tools to understand the motion of stars and planets. To calculate stellar distances using parallax techniques and determine the temperature of star from their emission spectra. To explain the physical principles behind the stellar formation and its life cycle based on modern physics. To distinguish the properties of the sun, planets and other stars. To appreciate and comprehend the modern view of galaxies, Hubble's law and Dark matter. 			
Prerequisites	Basic knowledge on Physics and Astrophysics		

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	BASICS OF ASTRONOMY System of Coordinates - Altazimuth, Equatorial (local and Universal), Ecliptic and Galactic systems. Earth-moon system-Tidal forces Precession of earth's axis Interiors Atmospheres- Planets Terrestrial planets - Jovian planets	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	PHOTOMETRIC CONCEPTS Magnitude scale and magnitude systems, correction for observed magnitudes. The proper motion - stellar parallax Trigonometric, cluster and secular parallaxes. Method of Luminosity distance. Measurement of stellar radii - Relation of luminosity with mass, radii and surface temperature.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	STARS AND ITS CLASSIFICATIONS Life – Cycle of the stars – The black body model of a star – Spectral classification of stars – Stellar colours – Colour index – Hertzsprung – Russell diagram – Visual binaries – Astrometric binary stars – Spectroscopic binaries – Photometric binary stars	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	SOLAR PHYSICS Interior -Atmosphere -Solaractivity - Helioseismology - White dwarfs- Chandrasekhar limit-Neutron stars- Pulsars	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	GALAXIES AND DARK MATTER Observable universe – Classification of galaxies based on Hubble sequence – Properties of each galaxies – Our milky way galaxy – Star formation in galaxies – Explanations of spiral structure – Dark matter	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	in galaxies – Red – shifts and Blue – Shifts –				
	Hubble's law in relation to the expanding				
	universe.				
Text Bo	ooks				
1.	Carroll, B. W., & Ostlie, D. A. (2006). An introduction to modern Astrophysics (2nd ed.). Cambridge				
	University Press.				
2.	Karttunen, H., Kröger, P., Oja, H., Poutanen, M., & Donner, K. J. (2016). Fundamental Astronomy(6th				
	ed.). Springer.				
3.	Kutner, M. L. (2007). Astronomy: A physical perspective (2nd ed.). Cambridge University Press.				
Suggest	red Readings				
1.	LeBlanc, F. (2011). An introduction to stellar Astrophysics. Wiley.				
2.	Choudhuri, A. R. (2012). Astrophysics for Physicists. Cambridge University Press.				
3.	3. Mihalas, D., & Binney, J. (1981). Galactic Astronomy: Structure and kinematics (2nd ed.). W H				
	Freeman.				
Web Re	esources				
1.	$\underline{https://www.youtube.com/watch?v=s4ZttiU2iL8\&list=PL0yNjaybQwdudycotA6z0DFK5DZaXWE1J}$				
2.	https://www.youtube.com/watch?v=NZR6aLACvVs&list=PL2yn_e5rlIW0bsNIOc3dEadJ6YwTOoj-				
	$\underline{Z\&index=12}$				
3.	$\underline{https://www.youtube.com/watch?v=D5GDztHsL3U\&list=PLMahwAGxKuWldeQ_qaIj8c0i7qbfyfLj4}$				
4.	4. <u>https://www.youtube.com/watch?v=vKAd2ICBk2c</u>				
5.	$\underline{https://www.youtube.com/watch?v=vDv3iSMdYyc\&list=PLbMVogVj5nJROKq6v6sZq74sjty86dAQ2}$				

Course Outcomes	(COs) and	Cognitive	Level	Mapping
	(- FF 8

COs	CO Description	Cognitive Level
CO 1	Classify the different coordinate systems and galaxies.	K1, K2
CO 2	Use various methodologies to find the Radii, Luminosity and Life of stars. Interpret dark matter from physics principles.	К3
CO 3	Distinguish between different galaxies and examine the interior of the sun and its activities.	K4
CO 4	Formulate the classification of various stars using HR diagram concepts.	K5
CO 5	Investigate the formation of stars and galaxies by applying the principles of modern physics.	K6

Course Code	PPH2ME02
Course Title	Geophysics
Credits	2
Hours/Week	4
Category	Major Elective (ME) – Theory
Semester	Π
Regulation	2022

Course Overview

- 1. Geophysics is an interdisciplinary subject applied in a wide range of industries, including oil, gas, petroleum and mineral exploration, groundwater, contaminants and salinity evaluation, government geological surveys, defense science and academic research.
- 2. The aim of this course is to provide the background knowledge of solid-earth, exploration and environmental geophysics. It is split into five sections: (i) Physics of Earth (ii) Geophysical and Geochemical analysis (iii) Seismology (iv) Geomagnetism and gravity (v) Geochronology and Petrophysics.
- 3. Each section, starts with the underlying mathematical basis and examine the applications at global, exploration, environmental scales and survey methods.
- 4. The course also involves methods of geophysical data analysis, modelling, visualization and interpretation through IPI2WIN and ArcGIS software.
- 5. Students will be introduced to career options through industry visits at Indian Meteorological Department (IMD), Chennai. The course is aimed at students from a range of numerate scientific backgrounds to choose their career and higher studies in Geophysics.

Course Objectives

- 1. To understand the structures and purposes of interior and exterior of the Earth.
- 2. To understand the formation of Earth through geophysical methods and studies on Geochemistry of groundwater.
- 3. To understand the geomagnetic behavior and the phenomenon of gravity of the Earth.
- 4. To apply the knowledge of Physics to evaluate the geophysical structures of Earth using various physic and chemical properties of rocks.

Prerequisites Basic knowledge on Physics and Geophysics

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	PHYSICS OFTHE EARTH Introduction to Geophysics- Earth as a member of the solar system-Atmosphere- Ionosphere- Asthenosphere-Lithosphere- Hydrosphere and Biosphere-Meteorology- Hydrological Properties of Water Bearing Materials: Porosity, void radio, permeability, transmissivity, storability, specific yield, specific retention, diffusivity, laboratory methods of determination of permeability.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	GEOPHYSICAL AND GEOCHEMICALMETHODS Geophysical methods: Geo referencing- Geographic Information system (GIS) - Electrical methods- Quantitative interpretation of Vertical Electrical Sounding curves –Subsurface and groundwater identification– 2D and 3D resistivity imaging system- Bore hole logging system- Ground Penetrating Radar and its applications - Geochemical methods: Introduction-Principles of ground water chemistry- Geochemical data analysis.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	INTRODUCTION TO SEISMOLOGY The earth's interior and crust as revealed by earthquakes- Rayleigh waves and Love waves- Elastic rebound theory- Continental drift-Earthquake magnitude and intensity- Horizontal seismograph and seismograph equation- Interior of the Earth and Earth	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

54 | P a g e

	-			-	
	quake prediction - Concepts of				
	Geodynamics- Numerical methods for				
	determination of focal depth and epicentral				
	location.				
	GRAVITY AND GEOMAGNETISM		CO1,		
	Gravity: Gravitational potential-Laplace's		CO2,		
	equation and Poisson's equation-Absolute	10	СОЗ,		
IV	and relative measurements of gravity-		CO4,		
	Worden gravimeter.		CO5	K1, K2, K3, K4, K5, K6	
	Geomagnetism: Historical introduction -				
	The physical origin of magnetism- Dynamo				
	theory of earth's magnetism. Proton				
	Precession Magnetometer-Alkali vapour				
	Magnetometer.				
	PETROPHYSICS		CO1,		
	Fundamental concepts of petrophysics-		CO2,		
V	Basic rock properties- Theory and		СОЗ,		
	Laboratory measurements of the physical	10	CO4,		
	properties of rocks - Radioactivity of the		CO5	K1, K2, K3, K4, K5, K6	
	earth-Radioactive dating-Core analysis,				
	acquisition, interpretation, and quality				
	checks- Geopolymers.				
Text Boo	ks		·		
1. A	Arthur W. Hounslow.(1995). Water quality data	a -Analysis a	ind Inter	pretation(11th Edition).	
I	Lewispublishers WashingtonD.C.				
2. 0	Cook. A.H.(1973) Physics of the Earth and Pla	nets(4 TH Ed	lition). N	AcMillan Press, London	
3. J	ohn Milsom. Field geophysics- The Geophysic	al field guid	e(6 th Ed	<i>lition)</i> . Wiley	
р	publications, England.				
4. K	4. Krauskopf. K.B(1967). Introduction toGeochemistry(6 th Edition). McGraw Hill.				
5. F	5. Ramachandra Rao(1975). Outline of geophysical prospecting-a manualfor Geologists(5 th				

- Edition). University of Mysore.
- 6. David Keith Todd, Larry W. Mays(2005). *Groundwater Hydrology.(* 3rd edition). John Wiley And Sons Inc.,
- 7. R.C.Ward and M. Robinson.(2011). *Principles of Hydrology*(4thedition).Mcgraw Hill Education.

Suggested Readings

- K. Kaul, S. Senugupta and A.K. Bhattacharya.(1990). I.K. Kaul, S. Senugupta and A.K. Bhattacharya.(1st edition). *General and Applied Geophysics (An introduction)*Association Of Exploration Geophysicists, Centre Of Exploration Geophysics Building,' Osmania University Campus, Hyderabad - 500 007, India.
- 2. F.D. Stacey.(1977). Physics of the Earth(1st edition). John Wiley and Sons, N.ew York
- 3. Richter, C.F.(1969). *Elementary Seismology.(* 1st edition). Eurasia Publishing house, Pvt. Ltd. New Delhi.
- 4. Rezhevisky and Novik.(1971). *Physical properties of Rocks*(1st edition). Mir Publications.
- 5. Koefeed C,(1980). *Principles of Geoelectrical Soundings*(1st edition). Elsevier.

Web Resources

- 1. https://sites.ualberta.ca/~vadim/Geoph325/Course325.htm
- 2. INTERMAGNET
- 3. <u>IMD | Home</u>
- 4. <u>Signal Analysis and Imaging Group SeismicLab Matlab Scripts for Seismic Data Processing</u> (ualberta.ca)
- 5. <u>Geophysics | USGS.gov</u>
- 6. <u>CSIR National Geophysical Research Institute (ngri.org.in)</u>
- 7. PGDA Home (nasa.gov)

COs	CO Description	Cognitive Level
CO 1	Understand physics and geology of the earth through geophysical observation and measurements.	K1, K2
CO 2	Outline the broad scale structure of the Earth and the physical processes governing the Earth's interior	К3
CO 3	Apply the geophysical methods to socially relevant problems, including natural hazards, ground water resource management and other environmental issues.	K4
CO 4	Ability to interpret the data obtained from the geoelectrical, geochemical, magnetic and seismic methods.	К5
CO 5	Design models and solve the equations with the use of both analytical and computational methods.	K6

Course Code	PPH2ME03		
Course Title	Physics of Semiconductor Devices		
Credits	02		
Hours/Week	04		
Category	Major Elective (ME)		
Semester	Π		
Regulation	2022		
Course Overview			

Course Overview

- 1. Physics of Semiconductor devices emphasize the working principles of Diodes, BJT, FET and Avalanche diodes.
- 2. The Equivalent circuit of a p-n diode will be analyzed in this course.
- 3. This course will provide an industry ready expertise for semiconductor device manufacturing industries.
- 4. The theory of transistors and their fabrication will be elaborated.
- 5. It includes the physics behind Photonic devices and their characteristics are explained.

Course Objectives

- 1. To understand the working principles and manufacturing details of Diodes.
- 2. To learn the dynamic of charge carriers in a Bipolar Junction Transistor.
- 3. To explore the various structural fabrication techniques of FET.
- 4. To understand the Electroluminescence theories of Photonic devices.
- 5. To learn the theories of Transferred-Electron Devices and Avalanche Diodes and their applications.

Prerequisites

Under graduation in Physics

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	P-N JUNCTIONS p-n Junction under Zero bias Conditions- The Diode Equation- Generation and Recombination Currents- Depletion Capacitance- Diffusion Capacitance and Equivalent circuit of a p-n diode- Tunneling and Tunnel Diodes- Junction Breakdown	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Π	BIPOLAR JUNCTION TRANSISTORS Principle of Operation- Minority Carrier Profiles in a Bipolar Junction Transistor- Current Components and Current Gain- Base Spreading Resistance and Emitter Current Crowding Base Contacts- Effects of Nonuniform Doping in the Base Region- Output Characteristics and Early Effect- Breakdown - Bipolar Junction Transistors in Integrated Circuits.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	FIELD-EFFECT TRANSISTORS Introduction- Surface Charge in Metal Oxide Semiconductor Capacitor- Capacitance–Voltage Characteristics Of MIS Structure- Metal Oxide Semiconductor Field–Effect Transistors (MOSFET)- Velocity Saturation Effects in MOSFET- Subthreshold Current in MOSFETS- MOSFET Capacitances and Equivalent Circuit	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	PHOTONIC DEVICESIntroduction-Photodetectors -LightEmissioninSemiconductors:ElectroluminescenceandLight-EmittingDiodes -Semiconductor Lasers -CrystallineSolar Cells-Integrated Optoelectronics	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

V	TRANSFERRED-ELECTRONDEVICES AND AVALANCHE DIODESIntroduction-Ridley-Watkins-Hilsum-Gunn Effect- Transferred-Electron Devices-Impatt, Trapatt, and Baritt Diodes.	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
`ext Books				

1. Shur, M. (2019). Physics of semiconductor devices. Pearson.

- 2. Sze, S., & Lee, M. K. (2015). Semiconductor devices: Physics and Technology (8th ed.). Wiley.
- 3. Colinge, J. P., & Colinge, C. A. (2005). Physics of semiconductor devices (2nd ed.). Springer.

Suggested Readings

- 1. Grasser, T. (2020). Noise in nanoscale semiconductor devices. Springer.
- 2. Sze, S. M., Li, Y., & Ng, K. K. (2021). *Physics of semiconductor devices* (4th ed.). Wiley.
- 3. Achuthan, M. K., & Bhat, K. N. (2006). *Fundamentals of semiconductor devices*. McGraw Hill Education.

Web Resources

- 1. <u>Semiconductor Device Physics (Lecture 1: Semiconductor Fundamentals) YouTube</u>
- 2. Introduction to Semiconductor Physics and Devices YouTube
- 3. (201) Semiconductors Physics inside Transistors and Diodes YouTube
- 4. EE130 Lecture Notes (berkeley.edu)
- 5. <u>semiconductors lecture notes (1)_0.pdf (iare.ac.in)</u>

COs	CO Description	Cognitive Level
CO 1	Explain the fundamental principles and applications of semiconductor devices	K1, K2
CO 2	Apply the laws to draw the equivalent circuits of semiconductor diodes and transistors	К3
CO 3	Explain and differentiate between the working and device fabrication of various electronic devices.	K4
CO 4	Summarize the different methods and principles involved in device fabrication, device characteristics and some applications.	К5
CO 5	Apply theoretical concepts and basic formulas to design new semiconductor devices	K6

Course Code	PPH2CD01		
Course Title	Climate Change and Energy Management		
Credits	1		
Hours/Week	3		
Category	Cross-Disciplinary (CD)		
Semester	П		
Regulation	2022		
 Course Overview The thematic areas related to climate change and clean energy management. The adverse effects of Greenhouse emission and its contribution to global warming. The expected consequences of climate change and the role of adaptation. The significant role of renewable energy resources in energy management. The importance of addressing alimate change issues, for conservation and sustainability. 			
 Course Objectives To provide students with the basic knowledge of climate science and the importance of energy. To help students understand the key concepts of climate science and climate change. To introduce them to energy conservation, its impact on society, various energy sources, energy conversion processes and energy management. To analyze the causes of climate change and identify how human activities affect the climate. To probe the principal challenges and opportunities for climate change action. 			

Basic knowledge of science and environment. Prerequisites

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	CLIMATE SCIENCE Introduction – Climate and Weather – Earth's Climate System – Natural Greenhouse Effect – The Radiation Balance – Greenhouse Gases - Past Climate – Industrial Revolution –Human emissions of CO ₂ .	8	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	IMPACTS OF CLIMATE CHANGE Keeling curve – Global Temperature Increase –Heat Waves, Forest Fire, Sea Level Rise, Ocean Acidification – Effects on Food security and production – Human health and livelihood – Adaptation and Mitigation Strategies.	8	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
ш	ENERGY SCENARIO World's Energy Scenario – Global Energy Consumption – Energy Demand – Energy and Climate Change – Global Threat.	8	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	ALTERNATE AND SUSTAINABLE ENERGY Classification of Energy Resources – Non- Renewable Energy Sources: Oil, Coal and Natural Gas – Renewable Energy Sources: Solar, Wind, Hydro, Ocean and Geothermal Energy – Energy Conversion, Storage and Utilization.	8	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	ENERGY MANAGEMENT: POLICIES AND TECHNOLOGIES Energy Management: Definition and Significance – Global and National Perspectives – Alternate Energy Policies – International Agreements: The United Nations Framework Convention on Climate	7	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Change, Kyoto Protocol, Paris Agreement –						
Future Technologies – Biofuels, Hydrogen,						
Geoengineering.						
Text Books						
1. Dessler, A. E. (2021). Introduction to modern of	climate chang	ge (3rd e	ed.). Cambridge University			
Press.						
2. Earle, S. (2021). A brief history of the earth's c	limate: Every	vone's g	uide to the science of climate			
change. New Society Publishers.						
3. Maslin, M. (2021). Climate: A very short introd	duction (4th	ed.). Ox	ford University Press.			
4. Parry, M., Rosenzweig, C., & Mel, M. D. (202	1). Our warn	ning pla	net: Climate change impacts			
and adaptation. World Scientific.						
Suggested Readings						
1. Lieberman, B., & Gordon, E. (2022). Climate c	change in hur	man hist	ory: Prehistory to the			
present(2nd ed.). Bloomsbury Academic.						
2. Moran, A. (2015). Climate change: The facts. S	Stockade boo	oks.				
Web Resources						
1. https://en.wikipedia.org/wiki/Climate_Change:	Global Ris	<u>ks, Cha</u>	<u>llenges_and_Decisions</u>			
2. https://en.wikipedia.org/wiki/Effects_of_climat	te_change					
3. <u>www.ipcc.ch</u>						
4. <u>www.aip.org/history/climate/</u>						
	5. https://en.wikipedia.org/wiki/National_Action_Plan_for_Climate_Change					
5. https://en.wikipedia.org/wiki/National_Action_	Plan_for_Cl	imate_C	<u>Change</u>			
 5. <u>https://en.wikipedia.org/wiki/National_Action</u> 6. <u>http://nca2014.globalchange.gov/</u> 	<u>Plan_for_Cl</u>	imate_C	<u>Change</u>			

COs	CO Description	Cognitive Level
CO 1	Acquire a broad knowledge of the issues related to climate change.	K1, K2
CO 2	Understand the key concepts of climate science and its significance in conserving Nature.	К3
CO 3	Acquainted with climate change adaptation and mitigation strategies.	K4
CO 4	Apply the knowledge of alternate energy sources to propose clean energy solutions.	К5
CO 5	Analyze the key aspects of energy management and suggest feasible solutions for a sustainable future.	K6

Course Code	PPH2MC04				
Course Title	Physics Practical – II				
Credits	4				
Hours/Week	8				
Category	Major Core (MC) – Practical				
Semester	Π				
Regulation	2022				
Course Overview1. This cour quantities2. It helps str3. Students v4. Students vgroups.	 Course Overview This course highlights the importance of having hands-on experience to measure physical quantities and use practical methods to understand theoretical concepts. It helps students to acquire experimental abilities, which are essential for physicists. Students will be able to use various components and equipments. Students will also be able to work efficiently and safely in a laboratory, both individually and in 				
 Course Objectives To determine elastic constants and hardness parameters of materials using appropriate experimental setup. To calculate the resistivity and dielectric parameters of crystals using apparatus. To understand the application of operational amplifiers as filters and D/A converters. To develop simple assembly language programs using microprocessor 8086. To explore the usage of Python language to execute simple programs involving arithmetic and logic instructions. 					
Prerequisites	Basic knowledge of the usage of scientific apparatus				

S. No	List of experiments	Hours Per	Cos	Cognitiv
		week Per		e
		student		levels
		Per Expt.		
1	Cornu's method – Young's modulus and Poisson's ratio –			
1.	Hyperbolic Fringes			
	Dielectric studies			
2.			CO1	<i>V</i> 1
3	Hardness studies	1	CO1,	K1, K2
5.			CO2,	K2,
4.	Electrical conductivity studies- Four Probe Method	8	CO3,	К3,
			СО4,	K4,
5.	GM counter–Feather Analysis.		CO5	K5,
		4		K6
6.	F.P. etalon – Spectrometer – Thickness of air film			
	B-H loop by CRO	1		
7.				
0	Hall Effect	1		
8.				
9	Magnetic susceptibility – Guoy's method			
10.	Constant deviation spectrograph – Copper arc spectra			
	Inverter-Low D.C. to High A.C. converter	1		
11.				
12.	A/D -Binary counter -IC 7493			
	555 Timer – Temperature control (thermistor)	4		
13.				
14.	OP-AMP Waveform generators			
	On - Amp 741 – Second order filters – Single pole and	1		
15.	double pole			
		l		
16.	Op -Amp 741 -D/A converter (R-2R &Weighted)			
10.				

17.	Microprocessor 8086-Introduction I (arithmetic and logical- all modes)			
18.	Microprocessor 8086-Introduction II (code conversions and arrays)			
19.	Microprocessor 8086 –Interface I (LEDs)			
20.	Microprocessor 8086 –Interface II(LEDs & switches)			
21.	Microprocessor 8086 –Interface III – water level controller			
22.	Turbo Debugger –Introduction I(simple programs– Trace mode)			
23.	Python – Introduction I			
24.	Python – Introduction II			
The sta list or	off in - charge shall select any 14 from this list. The remaining can be new experiments included by the staff in - charge with	2 experiments prior approval	can be chose of the depart	en from this ment.

Suggested Readings

- 1. Singh, S. P. (1999). Advanced Practical Physics (23rd ed.). Pragati Prakashan.
- 2. Nelkon, M., & Ogborn, J. M. (1978). *Advanced level Practical Physics* (4th ed.). Pearson Education.
- 3. Chattopadhyay, D., & Rakshit, P. C. (2017). *An Advanced course in Practical Physics* (10th ed.). New Central Book Agency.
- 4. Squires, G. L. (2001). Practical Physics (4th ed.). Cambridge University Press.

Web Resources

- 1. <u>https://vlab.amrita.edu/?sub=1&brch=282&sim=1005&cnt=1</u>
- 2. https://vlab.amrita.edu/?sub=1&brch=282&sim=1512&cnt=1
- 3. https://vlab.amrita.edu/?sub=3&brch=45&sim=539&cnt=900
- 4. <u>https://vlab.amrita.edu/?sub=1&brch=282&sim=1507&cnt=1</u>
- 5. <u>https://vlab.amrita.edu/?sub=1&brch=282&sim=879&cnt=1</u>
- 6. http://vlabs.iitkgp.ac.in/psac/newlabs2020/vlabiitkgpAE/exp2/index.html
- 7. <u>https://he-coep.vlabs.ac.in/Experiment6/index1.html</u>
- 8. <u>https://python-iitk.vlabs.ac.in/exp/arithmetic-operations/simulation.html</u>

COs	CO Description	Cognitive Level
CO 1	Define the objective of the experiment and explain the various parameters in the formula for determining a material's physical property.	K1, K2
CO 2	Construct the experimental setup and carry out the experiment	К3
CO 3	Make a list of the observations and repeat the experiment to compute the physical quantity using the appropriate formula.	K4
CO 4	Interpret the obtained result and sketch the variations wherever required.	К5
CO 5	Analyze the result of the experiment to build or create a piece of equipment or a device for use in project/research activity.	K6

Course Code	PPH3MC01		
Course Title	Quantum Mechanics -I		
Credits	7		
Hours/Week	6		
Category	Major Core (MC)		
Semester	III		
Regulation	2022		
 An introduction to linear vector space and the associated algebra Use Schroedinger formalism to solve 1 and 3D problems to understand the concepts exclusive quantum mechanics. Extensive use of abstract operator algebra to learn about angular momentum and its importance. Use of different approximation methods to perturbed systems. 			
 Course Objectives To learn quantum mechanics from the abstract concept of linear vector space, linear operators, and their algebra, unitary transformation and its consequence. Make extensive use of Schroedinger representation to learn about the newer concepts of quantization of energy, and angular momentum and tunneling across barrier. To understand and appreciate the commutative and non-commutative algebra in the special context of angular momentum in general. To solve time independent perturbed systems using various methods and give an account of splitting of atomic spectral lines an estimate of ground state energy of simple systems. To provide a formulation for scattering phenomena and correlate it with experimental results. 			
Prerequisites	 A thorough understanding of mechanics. Knowledge of partial differential equation and variable separable method. Commendable knowledge of integral and differential calculus. 		

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	GENERAL FORMALISM Linear vector space – ket and bra notations – inner product – norm of a vector – linear independence – dimension and basis of a vector space–Hilbert space. Linear Operators – Hemitian adjoint – Eigenvalues and eigenfunctions– representation theory : matrix representation of basis, bra and ket vectors, inner and outer product – change of basis – unitary operators – matrix elements – unitary transformation – diagonalisation – coordinate and momentum representation.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Π	EXACTLY SOLVABLE PROBLEMS Time dependent Schrodinger wave equation – the three pictures in quantum mechanics – Particle in a box – Step potential – delta potential – potential barrier –barrier penetration – simple harmonic oscillator – operator method – number states – coherent states – orbital angular momentum – eigenvalue problem (analytical method)– Hydrogen atom.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	ANGULAR MOMENTUM (Bra-ket notation) General angular momentum operators – ladder operators - commutation relations – eigenkets – matrix representation of operators – spin angular momentum – properties of spin operators - spin half systems – eigenkets – Pauli matrices – magnetic moment of an electron- addition of angular momentum – recursion relation connecting Clebsch-Gordan coefficients.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

68 | P a g e

r						
	APPROXIMATION METHODS		CO1,			
	Time independent perturbation theory – non		CO2,			
	degenerate energy levels - first order and		СОЗ,			
IV	second order correction to energy and wave		СО4,			
	function - anharmonic oscillator, ground	15	CO5	K1, K2, K3, K4, K5, K6		
	state of Helium atom - degenerate energy					
	levels - Stark effect - spin-orbit interaction					
	- Zeeman effect- WKB approximation					
	(qualitative) - variational method - upper					
	bound on ground state energy, Hydrogen					
	molecule.					
	SCATTERING THEORY AND		CO1,			
	APPLICATIONS		CO2,			
V	Scattering cross section – scattering		СОЗ,			
	amplitude – partial waves- scattering by a	15	CO4,			
	central potential - partial wave analysis -		CO5	K1, K2, K3, K4, K5, K6		
	scattering by a square potential well – Breit-					
	Wigner formula – scattering length – phase					
	shift – Born approximation – scattering by a					
	screened Coulomb potential - validity of					
	Born approximation- scattering cross					
	section relation between Lab and centre of					
	mass of coordinate system					
Text Boo	ks					
1. 5	Shankar, R. (2011). Principles of Quantum mec	<i>chanics</i> (2nd	ed.). Sp	ringer.		
2. Bransden, B. H., & Joachain, C. J. (2012). <i>Quantum mechanics</i> (2nd ed.). Pearson.						
3. Zettili, N. (2009). <i>Quantum mechanics: Concepts and Applications</i> (2nd ed.). Wilev.						
4. Arul Dhas, G. (2008). <i>Quantum mechanics</i> (2nd ed.). PHI.						
5. Agarwal, B. K., & Prakash, H. (2005). <i>Quantam mechanics</i> (5th ed.). PHI.						
6. Kakani, S. L., & Chandalia, H. M. (2004). <i>Quantum mechanics: Theory and Problems</i> (3rd ed.).						
Sultan Chand and Sons.						
7. 1	7. Thankappan, V. K. (1993). Quantum mechanics (2nd ed.). New Age International.					

Suggested Readings	
1. Mathews, P. M., & Venkatesan, K. (2017). A Textbook of Quantum mechanics (2nd ed.). Tata	
McGraw-Hill Education.	
2. Griffiths, D. J., & Schroeter, D. F. (2019). Introduction to Quantum mechanics (3rd ed.).	
Cambridge University Press.	
3. Tannoudji, C. C., Diu, B., & Laloe, F. (1977). Quantum mechanics (Vol.1) (2nd ed.). Wiley-VC	H.
4. Carlson, T. (2013). Photoelectron and auger Spectroscopy. Springer.	
5. Chatwal, G. R., & Anand, S. K. (2010). Spectroscopy: Atomic and molecular (5th ed.). Himalay	a
Publishing House.	
6. Hollas, J. M. (2004). Modern spectroscopy (4th ed.). Wiley.	
Web Resources	
Web Resources	
1. <u>https://www.youtube.com/watch?v=TcmGYe39XG0&list=PL0F530F3BAF8C6FCC&index=1</u>	
 https://www.youtube.com/watch?v=TcmGYe39XG0&list=PL0F530F3BAF8C6FCC&index=1 https://archive.nptel.ac.in/courses/115/101/115101107/ 	
 https://www.youtube.com/watch?v=TcmGYe39XG0&list=PL0F530F3BAF8C6FCC&index=1 https://archive.nptel.ac.in/courses/115/101/115101107/ https://www.youtube.com/watch?v=zdouC7ZNTJ0 	
 https://www.youtube.com/watch?v=TcmGYe39XG0&list=PL0F530F3BAF8C6FCC&index=1 https://archive.nptel.ac.in/courses/115/101/115101107/ https://www.youtube.com/watch?v=zdouC7ZNTJ0 https://www.digimat.in/nptel/courses/video/115102023/L01.html 	
 https://www.youtube.com/watch?v=TcmGYe39XG0&list=PL0F530F3BAF8C6FCC&index=1 https://archive.nptel.ac.in/courses/115/101/115101107/ https://www.youtube.com/watch?v=zdouC7ZNTJ0 https://www.digimat.in/nptel/courses/video/115102023/L01.html https://www.digimat.in/nptel/courses/video/115106066/L39.html 	
 https://www.youtube.com/watch?v=TcmGYe39XG0&list=PL0F530F3BAF8C6FCC&index=1 https://archive.nptel.ac.in/courses/115/101/115101107/ https://www.youtube.com/watch?v=zdouC7ZNTJ0 https://www.digimat.in/nptel/courses/video/115102023/L01.html https://www.digimat.in/nptel/courses/video/115106066/L39.html https://www.youtube.com/watch?v=l5ddR3JzM5Y 	

COs	CO Description	Cognitive Level
CO 1	Identify and summarize all the new algebra. Apply the new algebra to systems and interpret the results that are exclusive to quantum world.	K1, K2
CO 2	Employ the concept of commutative and non-commutative algebra in explaining orbital and spin angular momentum.	К3
CO 3	Devise theoretical methods to explain scattering phenomena and compare with experimental results.	K4
CO 4	Choose appropriate approximation methods to evaluate the energy corrections in perturbed systems.	К5
CO 5	Integrate all the concepts to facilitate problem solving with an aim to appreciate the new concepts.	K6

Course Code	PPH3MC02		
Course Title	Spectroscopy		
Credits	7		
Hours/Week	6		
Category	Major Core (MC)		
Semester	III		
Regulation	2022		
Course Overview 1. This course focuses on the fundamentals of rotational, infrared, Raman, electronic and NMR spectroscopic analysis.			

- 2. This course helps the students to understand the working principles of spectroscopic instruments like FTIR, NMR, Mossbauer and other spectrometers.
- 3. In this course students learn to analyze the spectroscopic fingerprints and interpret them for chemical analysis.
- 4. Resonance spectroscopic techniques (ESR and NMR) will be discussed in detail.
- 5. This course demonstrates applications like atomic, nuclear and molecular structural analysis of various materials.

Course Objectives

- 1. To understand the vibrational and rotational spectroscopic principles.
- 2. To know the fundamentals of FTIR, NMR techniques.
- 3. To use spectroscopic instruments like FTIR for analyzing the samples.
- 4. To understand the theory of electronic spectroscopy and ESR instrumentation.

5. To explain the theory of Mossbauer spectroscopy, instrumentation and interpretation.

Prerequisites

Basic knowledge in Physics and electromagnetic radiations
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	MICROWAVE SPECTROSCOPY Rotation of molecules-Rotational spectra - Rigid and non-rigid diatomic rotator- Intensities of spectral lines- Effect of Isotopic substitution-Polyatomic molecules (Linear, symmetric top and asymmetric top)-Chemical analysis by microwave spectroscopy- Techniques and instrumentation- microwave oven.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	INFRARED SPECTROSCOPY Vibration of Diatomic molecules-Simple Harmonic Oscillator-Anharmonic oscillator-Diatomic vibrating rotator- The vibration-rotation spectrum-Interactions of rotations and vibrations-The vibrations of polyatomic molecules-Influence of rotation on the Vibrational spectra of linear and symmetric top molecules-Analysis by infrared techniques-Instrumentation-FTIR spectroscopy.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	RAMAN SPECTROSCOPY Classical and quantum mechanical picture of Raman effect-Polarizability-Pure rotational Raman spectra- Vibrational Raman Spectra-Raman activity of vibrations of CO ₂ and H ₂ O-Rule of mutual exclusion-Overtone and combination vibrations- Rotational fine structure -Vibrations of spherical top molecule-structure determination from Raman and IR spectroscopy-techniques and instrumentation-FT Raman spectroscopy- Surfaces for SERS study-SERS microbes- Surface selection rules	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	ELECTRONIC OPECTROCCOPY		001		
	ELECTRONIC SPECTROSCOPY		CO1,		
	Electronic spectra of diatomic molecule-		CO2,		
	Frank-Condon principle-Dissociation		СОЗ,	K1, K2, K3, K4, K5, K6	
IV	energy and dissociation products-		CO4,		
	Rotational fine structure-Fortrat diagram-	15	CO5		
	predissociation-Shapes of some molecular				
	orbits-Chemical analysis by electronic				
	spectroscopy-Techniques and				
	instrumentation-ESR spectroscopy-				
	Introduction- Techniques and				
	instrumentation.				
	NUCLEAR SPECTROSCOPY		CO1,		
	Nuclear magnetic resonance spectroscopy-		CO2,		
V	Introduction-Interaction of spin and		СОЗ,	K1, K2, K3, K4, K5, K6	
	magnetic field- population of energy levels-	15	CO4,		
	Larmor precession-Relaxation times-		CO5		
	Double resonance- Chemical shift and its				
	measurement- Coupling constant-Coupling				
	between several nuclei- Quadrupole effects-				
	C13 NMR spectroscopy- Interpretation of				
	simple spectrum - Mossbauer spectroscopy:				
	Principle-instrumentation-Applications of				
	Mossbauer spectroscopy: Chemical shift-				
	Effect of electric and magnetic fields.				
Text Boo	ks				
1. A	Aruldhas, G. (2007). Molecular Structure and S	Spectroscopy	v (2nd ed	l.). PHI.	
2. E	Banwell, C. N., & McCash, E. M. (2004). Fund	lamentals of	Molecu	lar Spectroscopy (5th ed.). Tata	
Ν	AcGraw-Hill Education.	v			
Suggester	l Readings				
Suggester	Thaudhuri R K Mekkaden M Raveendran	AV & Na	ravanan	$\Delta = S_{1}(2010)$ Recent advances	
1. C	n Spectroscony: Theoretical Astrophysical and	A. V., & Na d Exporimon	itayanan ital narsi	A. S. (2010). Neceni uuvunces	
יי ר כ	Suniz C. Kutscherg W. Fink D. Herzog G.	$\mathbf{F} = \mathbf{F} \mathbf{P} \mathbf{F} \mathbf{r} \mathbf{d}^{-1}$	D D (20)	11) Accelerator mass	
2. 1	2. I uniz, C., Kutschera, W., Fink, D., Herzog, G. F., & Bird, J. R. (2011). Accelerator mass				
2 5	spectrometry. Ourusensuive unalysis for globa	the science. C	\mathbf{C} ries	5. Dogwoon	
5. E	Engel, 1. (2013). Quantum Chemistry and Spec	uroscopy (Si	ra ea.). F	earson.	
4. V	watts, J. F., α woistennoime, J. (2019). An Int.	roauction to	surjace	unalysis by APS and AES(2nd	
e 5 (20.1, whey. Contain T (2012) Photoslastian and average $C_{\rm eff}$	actuaccon	Cominas	*	
5. 0	Lanson, 1. (2015). Fnotoelectron and duger Sp	ectroscopy.	springe	1.	

- 6. Chatwal, G. R., & Anand, S. K. (2010). *Spectroscopy: Atomic and molecular* (5th ed.). Himalaya Publishing House.
- 7. Hollas, J. M. (2004). Modern spectroscopy (4th ed.). Wiley.

Web Resources

- 1. JLExp13.pdf (mit.edu)
- 2. https://nptel.ac.in/courses/115101003
- 3. Infrared spectroscopy Wikipedia
- 4. B-2 Mossbauer Spectroscopy Physics 191r (harvard.edu)
- 5. Surface-enhanced Raman spectroscopy Wikipedia

COs	CO Description	Cognitive Level
CO 1	Understand and explain the fundamental concepts and applications of microwave, IR, Raman and other spectroscopic methods.	K1, K2
CO 2	Make use of electronic spectroscopy for chemical analysis.	К3
CO 3	Analyze the NMR and FTIR spectra of various samples and identify their chemical structure.	K4
CO 4	Choose suitable spectroscopic technique and examine the chemical composition of a material.	К5
CO 5	Apply the knowledge acquired and use spectroscopic instruments to examine and develop new materials.	K6

Course Code	PPH3ME01				
Course Title	Advanced Mathematical Methods				
Credits	2				
Hours/Week	4				
Category	Major Elective (ME)				
Semester	III				
Regulation	2022				
 This course overview This course problems. This will and electro Will be in This course 	 Course Overview This course introduces the various advanced special functions which are relevant to physical sciences This course aims to applications of Laplace transform techniques which are relevant to physical problems. This will enable them to bring out important special functions necessary for quantum mechanics and electrodynamics. Will be introduced to the tensor algebra and analysis in a simple way. 				
 Course Objectives To determine the solutions of various advanced level special differential equations. To familiarize and use the Laplace transform techniques to relevant physical problems. To perform integrals based on error functions. To learn the tensor analysis which are relevant to general theory of relativity. To apply the various group theoretical tools in to quantum mechanics and condensed matter physics 					
Prerequisites	Basic knowledge of real variable calculus, differential equation				

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	SPECIAL FUNCTIONS - I Laguerre polynomials - Generating function - Orthogonality properties - Recurrence relation - Associated Laguerre polynomial	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	SPECIAL FUNCTINOS – II Bessel function - Generating function – Hankel function – Recurrence relations - Spherical Bessel function - Graphs - Orthonormality relation The error function and its properties	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	APPLICATIONOFLAPLACETRANSFORMApplication: (1) Response of an RC circuit to a single square wave (2) Response of a damped vibrating system to a single square wave and to a unit impulse (3) Systems of two differential equations - two masses connected by a spring	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	TENSOR ANALYSIS Tensors in Physics - Notation and conventions - Contra and covariant tensors of rank one and two - Transformation from Cartesian to polar coordinates - Algebra of tensors - outer and inner products - Contraction - Symmetric and anti- symmetric tensors - Quotient law - Conjugate tensors - Metric tensor - Raising and lowering of indices Cartesian tensors - Rotation and translation - Orthogonal transformations - Transformation of divergence and curl of vectors Stress, strain and Hooke's law - Piezoelectricity and dielectric susceptibility - Moment of inertia tensor	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	GROUP THEORY		CO1,		
	Groups - Symmetry transformation of a		CO2,		
V	square - Conjugate element and classes -		СОЗ,	K1, K2, K3, K4, K5, K6	
	multiplication of classes - Subgroups - cyclic	10	CO4,		
	group - Normal subgroups and factor groups -		CO5		
	Direct product of groups - Isomorphism and				
	homomorphism - Permutation groups - Distinct				
	groups -representation theory of finite groups -				
	Molecular point groups - irreducible				
	representation of point groups - reducible				
	representation - Schur's lemma and the				
	orthogonality theorem -				
	character of the representation - the example of				
	C4V - irreducible representation and regular				
	representation				
Text Boo	ks				
1.	Erwin Kreyzig, Advanced Engineering Mathematics	, 8 th Edition	n(1991),W	Viley Eastern Ltd.	
2. 1	H. K. Dass, Mathematical Physics, First edition(2010), S. Chand	Publishi	ng.	
3. 1	M.K. Venkatraman, Numerical methods in science an	nd Engineer	ing (Unit	– 4 & 5), Fifth	
6	dition(1999), The national publishing company.				
C t.	י תו				
Suggeste	1. Comer, D. (2013). <i>Internet working with TCP/IP</i> (6th ed.). Prentice Hall of India.				
2. 7	2. Taub, H., & Schilling, D. L. (2017). Principles of communication systems (4th ed.). McGraw Hill			(4th ed.). McGraw Hill	
]	Education.				
3. 1	Kurose, J. F., & Ross, K. W. (2013). Computer netwo	orking: A to	p-down a	pproach (7th ed.). Pearson.	
4.]	Lee, C. Y. (1988). Mobile Communication Engineeri	ng (2nd ed.)). Tata M	cGraw Hill.	
Web Res	ources				
1. 1	nttps://www.youtube.com/watch?v=9MTqD7yxHWg	g&list=PLq-			
	Gm0yRYwThklRVGuMC01Gl7m1YSv_qn		-		
2. 1	nttps://www.youtube.com/watch?v=9MTqD7yxHWg	g&list=PLq-	<u>.</u>		
	Gm0yRYwThklRVGuMC01Gl7m1YSv qn				
3. 1	https://www.youtube.com/watch?v=NmYdDE7b-				
l	oc&list=PLMdnA49lASokRJHnH6Hm1A6ZzmQCS	2f1D			
4. 1	nttps://www.youtube.com/watch?v=e0eJXttPRZI&lis	st=PLlXfTF	IzgMRU	LkodllEqfgTS-H1AY bNtq	
5. 1	https://www.youtube.com/watch?v=uaQeXi4E7gA&	list=PLdgV	BOaXkb	9D6zw47gsrtE5XqLeRPh27	
	-	-			

COs	CO Description	Cognitive Level
CO 1	Acquire the skill of determining the solution of advanced special differential equations	K1, K2
CO 2	Calculate the integrals based on error functions	K3
CO 3	Ability to distinguish Laplace transform and Fourier transform techniques	K4
CO 4	Apply the tensor analysis basics to general relativity and anisotropic materials	K5
CO 5	Solve problems in group theory which are relevant to quantum mechanics, condensed matter physics	K6

Course Code	PPH3ME02				
Course Title	Communication Physics and network technology				
Credits	2				
Hours/Week	4				
Category	Major Elective (ME)				
Semester	III				
Regulation	2022				
Course Overview 1. The Cours fundamen	 Course Overview 1. The Course provides the students with basic information of communication physics and fundamental knowledge of the concepts of network technology. 				
 Course Objectives To expose students to the advancements in communication physics. To provide insights into the basic concepts of network technology. To help students understand the principle guiding cellular communication. To introduce the various network models and their limitations. To aid in analysing the applications of networking and attempt simple designing. 					
Prerequisites	Basic knowledge of electronics and physical media.				

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	DIGITAL TRANSMISSION AND MODULATION TECHNIQUES Basic concepts of Communication - Analog and Digital transmission - Synchronous / Asynchronous Transmission - Line configurations - Interfacing. Digital data Digital signals - Variations of NRZ and bi - phase - Digital data Analog signals - ASK, FSK, PSK, QPSK - Analog data digital signals - PCM, DM.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	OPTIC FIBRE COMMUNICATION Fibre Optic Communication Systems – Step – Graded index fibres – Wave propagation – Fibre modes – Single and multimode fibres –Numerical aperture – Dispersion – Fibre bandwidth – Fibre losses - Scattering, absorption, bending, leaky mode and mode coupling losses – Attenuation coefficient Material absorption.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	CELLULAR COMMUNICATION Evolution of Mobile communication - Spread spectrum & hopping - fading and Doppler spread - Cellular systems - Medium access control - Principles of SDMA, FDMA, TDMA & CDMA and their comparison - GSM - Radio interface - Localization and calling - Handover - Security & Authentication - Mobile IP - IP packet delivery.	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	BASICS OF NETWORK TECHNOLOGY Introduction: Uses of computer networks - Network hardware – LAN, MAN, WAN - Network software – OSI AND TCP/IP Reference models.	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	The Dhysical Layor The theoretical basis				
	for data communication Cuidad				
	T · · · · · · · · · ·				
	Transmission media - Transmission				
	impairments.				
	The Data Link Layer: Data link layer design				
	issues - Error detection and correction –				
	Parity Check and Cyclic Redundancy Check				
	- Elementary data link protocols.				
	NETWORK DESIGN AND ISSUES		CO1,		
	The network layer: Network layer design		CO2,		
V	issues - Routing algorithms - Congestion		СОЗ,	K1, K2, K3, K4, K5, K6	
	control algorithms. The transport layer:	10	CO4,		
	Transport laver design issues – Simple		CO5		
	Transport protocols - Internet transport		_		
	protocols LIDP_TCP				
	The application layer Domain Name				
	Sustem Electronic mail World Wide				
	System - Electronic man – world wide				
	Web.				
Text Books					
1. William Stallings. (2014). Data and Computer Communications (10th ed.). Pearson.					
2. Tanenbaum, A. S., & Wetherall, D. J. (2013). <i>Computer Networks</i> (5th ed.). Prentice Hall of India.					
3. Forouzan, B. A. (2013). Data Communications and Networking (5th ed.). McGraw-Hill.					
4. S	4. Schiller, J. H. (2008). Mobile Communications (2nd ed.). Pearson Education.				
Suggestee	Suggested Readings				
1. 0	Comer, D. (2013). Internet working with TCP/I	<i>P</i> (6th ed.).	Prentice	Hall of India.	
2. 7	Caub, H., & Schilling, D. L. (2017). Principles	of communic	cation sy	vstems (4th ed.). McGraw Hill	
E	Education.				
3. k	3. Kurose, J. F., & Ross, K. W. (2013). Computer networking: A top-down approach (7th ed.).				
P	Pearson.				
4. I	4. Lee, C. Y. (1988). Mobile Communication Engineering (2nd ed.). Tata McGraw Hill.				
Web Res	Durces				
1.	1. Data Communications and Networks (ITS323, Lecture 2, 2014) - YouTube			YouTube	
2.	2. Introduction to Networking Network Fundamentals Part 1 - YouTube				
3.	3. 01 Introduction DATA COMMUNICATIONS AND NETWORKING PART 1 - YouTube				
4.	4. (201) 01 Introduction DATA COMMUNICATIONS AND NETWORKING PART 1 - YouTube				
-	4. (201) 01 Introduction DATA COMMUNICATIONS AND NETWORKING PART 1 - YouTube				
5.	Computer Communication Networks Lecture	Notes (kent.	edu)		

COs	CO Description	Cognitive Level
CO 1	Comprehend the basics of communication and modulation techniques	K1, K2
CO 2	Acquainted with optical fibre communication principles and applications	K3
CO 3	Attain knowledge about the fundamentals of cellular communication	K4
CO 4	Gain insights into the basic concepts of computer technology and apply them to algorithms	К5
CO 5	Acquire skills for Network Design and analyse issues related to layers	K6

Course Code	PPH3ME03					
Course Title	Medical Physics					
Credits	2					
Hours/Week	4					
Category	Major Elective (ME)					
Semester	III					
Regulation	2022					
Course Overview						
1. This cours	se will provide a comprehensive survey of modern nuclear medical imaging as well as a					
look into t	the emerging field of molecular imaging.					
2. The basic	principles of radiotherapy treatment modalities, radiation detection, dose calibration					
methods, a	and image-based treatment planning will be reviewed.					
3. Basic und	erstanding of Nanomedicine and Applications					
4. The course	e provides the necessary physics background that underpins day-to-day use of ultrasound					
in medicir	1e.					
Course Objectives	Course Objectives					
1. To familia	rize students with basic principles of radiation physics and also X-ray Generators, Particle					
Accelerators used in radiotherapy.						
2. To unders	stand the basic physics of the electromagnetic and particulate forms of ionizing & non					
ionizing ra	adiation.					
3. To demonstrate in-depth knowledge of topics in medical physics, including imaging and therapy						

4. To appreciate the use and developments of Nanomedicines.

Prerequisites Basic knowledge on Physics and Medical Physics	
--	--

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	BASIC INTRODUCTION TO MEDICAL PHYSICS Physics discoveries - Tools for physics applied to medicine - Medical imaging - PET and PET/CT - Conventional radiation therapy - Principles of Radiation detection and measurements – Radiation dosimeters and Radiation monitors.	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	RADIATION EVALUATION AND CONTROL Basic concepts of Radiation protection standards –External radiation protection – Radiation dose limits –Equivalent dose, effective dose, committed dose – radiation exposures – Evaluation of external and internal radiation hazards and control- radioactive waste disposal – Radiation emergencies	11	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	LASERS IN MEDICINE Superiority of Laser, Laser tissue interaction, physical effects on human skin of laser beam reflection, absorption, scattering), different interaction mechanism (photodynamic therapy), Lasers in Surgery: different surgical treatments.	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	 PHYSICS OF ULTRASOUND & IMAGING Production & properties of ultrasound – propagation of ultrasound through body tissue Acoustic impedance and acoustical characteristics in human body –ultrasound scanning modes – Ultrasound cardiography (UCG) – Doppler effect – Double doppler shift – doppler systems – ultrasonic tomography – applications of ultrasound in medicine. 	10	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	NANOMEDICINE		CO1,	
	Concept of nanomedicines, Rationale for		CO2,	
V	designing of nanomedicines. Materials for		CO3.	K1, K2, K3, K4, K5, K6
	preparation of nanomedicines, Different	10	CO4,	
	structures of nanomedicines. Applications of		CO5	
	nanomedicines for Antibacterial Treatments-		-	
	Drug Delivery - Diabetes.			
Text Book	XS			
1. C	errito, L. (2017). Radiation and Detectors: Intro	duction to t	he Physic	cs of Radiation and Detection
d	evices. Springer.		2	U
2. B	hargava, S. K., & Bhargava, S. (2018). Textboo	ok of Radiol	logy for 1	Residents & Technicians (5th
e	d.). Bhargava.	5	0, 1	X
3. T	hayalan, K. (2014). The Physics of Radiology an	d Imaging.	Jaypee M	ledical Publishers.
4. B	ushberg, J. T., Seibert, J. A., Leidholdt, E. M.,	& Boone, J	. M. (202	20). The Essential Physics of
M	Medical Imaging (4th ed.). Wolters Kluwer.			, .
5. T	hayalan, K. (2017). Basic Radiological Physics (2nd ed.). Ja	ypee Bro	thers Medical Publishers.
6. G	ilani, S. A., & Abbasi, T. A. (2012). Lecture no	otes on Ulti	rasound L	Physics and Instrumentation:
U	Ultrasound (2nd ed.). Javed Medical Book Shop.			
7. F	7. Fish, P. (1990). Physics and Instrumentation of Diagnostic Medical Ultrasound. Wiley.			
8. D	8. Dendy, P. P., & Heaton, B. (2011). <i>Physics for Diagnostic Radiology</i> (3rd ed.). CRC Press.			
9. P	9. Podgorsak, E. B. (2016). Radiation Physics for Medical Physicists (3rd ed.). Springer.			l ed.). Springer.
10.	10. Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2020). <i>The Essential Physical PhysicaPhys</i>			(2020). The Essential Physics
0)	f Medical Imaging (4th ed.). Wolters Kluwer.			· · ·
11.	11. Martin, A., Harbison, S., Beach, K., & Cole, P. (2018). <i>An Introduction to Radiation Protect</i>			ction to Radiation Protection
(7	7th ed.). CRC Press.			
12.	12. Gibbons, J. P. (2019). <i>Khan's: The Physics of Radiation Therapy</i> (6th ed.). Wolters Kluwer.			(6th ed.). Wolters Kluwer.
Suggested	Readings			
1. T	1. Thayalan, K. (2014). The Physics of Radiology and Imaging. Jaypee Medical Publishers.			
2. Je	2. Jelinkova, H. (2013). Lasers for Medical Applications: Diagnostics, Therapy and Surgery. Elsevier.			
3. W	3. Waynant, R. W. (2001). Lasers in Medicine. CRC Press.			
4. G	4. Gibbs, V., Cole, D., & Sassano, A. (2011). Ultrasound Physics and Technology: How, why and when			nnology:How, why and when.
E	Elsevier.			
5. N	fiele, F. J. (2013). Ultrasound Physics and Instru	mentation ((5th ed.).	Miele Enterprises.
6. Ja	6. Jain, K. K. (2017). The Handbook of Nanomedicine (3rd ed.). Humana Press.			Press.
7. W	7. Webster, T. J. (2012). Nanomedicine: Technologies and Applications. Woodhead.			Woodhead.

Web Resources

- 1. <u>https://www.youtube.com/watch?v=TcmGYe39XG0&list=PL0F530F3BAF8C6FCC&index=1</u>
- 2. https://archive.nptel.ac.in/courses/115/101/115101107/
- 3. <u>https://www.youtube.com/watch?v=zdouC7ZNTJ0</u>
- 4. https://www.digimat.in/nptel/courses/video/115102023/L01.html
- 5. https://www.digimat.in/nptel/courses/video/115106066/L39.html
- 6. <u>https://www.youtube.com/watch?v=l5ddR3JzM5Y</u>

COs	CO Description	Cognitive
		Level
CO 1	Explain the various physics principles involved in therapy, Medical imaging and Medicines.	K1, K2
CO 2	Interpret diagnostic ultrasound images based on understanding of the interaction between ultrasound and tissue.	К3
CO 3	Critically analyze the role of lasers in medicine, their applications in diagnostic and therapeutic processes.	K4
CO 4	Construct electronic circuits based on the various principles involved in developing a medical gadget.	К5
CO 5	Formulate methodologies that combine Nanotechnology to device Drug Delivery systems.	K6

Course Code	PPH3ID01	
Course Title	Nanoscience	
Credits	03	
Hours/Week	06	
Category	Inter Disciplinary (ID)	
Semester	III	
Regulation	2022	
Course Overview		

- 1. Introduction to the underlying principles and applications of the emerging field of Nanoscience and Nanotechnology.
- 2. Intended for a multidisciplinary audience.
- 3. Introduces tools and principles relevant at the nanoscale dimension.
- 4. Discusses current and future nanotechnology applications in physics, chemistry, biology and engineering.
- 5. Identify societal and technology issues that may impede the adoption of nanotechnology.

Course Objectives

- 1. To learn definitions of nanoscience and nanotechnology as research and technology development fields.
- 2. To understand the historical perspective on major findings that resulted in the establishment of nanotechnology as a research field; understand the motivation behind the research.
- 3. To explore the new physics/chemistry in the nano dimension and discuss advantages over the traditional disciplines.
- 4. To familiarize with selected topics in nanoscience, including experimental techniques, material synthesis, basic principles, and nanoscale material properties.

Basic knowledge on Physics and Nanoscience

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	FUNDAMENTALS OF NANOSCALE SCIENCE 1.1. Introduction - nano and nature - background to nanotechnology - scientific revolutions opportunities at the nanoscale - time and length scale in structures - influence of nano over micro/macro, size effects and crystals, One dimensional, Two dimensional and Three dimensional nanostructured materials, mechanical-physical-chemical properties. 1.2. Energy landscapes basic intermolecular forces - interdynamic aspects of intermolecular	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Π	CLASSIFICATION OF NANOPARTICLES AND THEIR PROPERTIES 2.1. Metal Nanoparticles: Definition of a nano system - classification of nanocrystals; Quantum dots, Nanowires and Nanotubes, 2D films; Nano & mesopores – top down and bottom up approach- Magnetic nanomaterials: Fundamentals of magnetic materials, Dia, Para, Ferro, Ferric, and Superpara magnetic materials, Nanostructured Magnetism. 2.2. Semiconductor Nanocomposites: Types of Nanocomposites (Metal oxides, ceramic and Glass), Core - Shell nanoparticles - Types of systems - properties of nanocomposites. Carbon Nanostructures: Introduction, Fullerenes, C60, CNT, mechanical, optical and properties.	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
Ш	 SYNTHESIS OF NANOMATERIALS 3.1. Physical methods: Thermal evaporation, Spray pyrolysis, Molecular beam epitaxy (MBE), Physical vapour deposition (PVD), Microwave heating, 3.2. Chemical methods: Chemical and co - 	16	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	precipitation, Sol fundamentals - sol - gel synthesis of metal oxides, Micro emulsions or reverse micelles, Solvothermal, Sonochemical synthesis, Electrochemical synthesis, Photochemical synthesis, Langmuir - Blodgett (LB) technique, Chemical vapour deposition (CVD)			
IV	CHARACTERIZATION TECHNIQUES 4.1. Powder X - Ray Diffraction, Scanning electron microscope (SEM), Transmission electron microscope (TEM), Scanning tunnelling microscope (STM), Atomic force microscope (AFM), Scanning probe microscopy (SPM), UV - Visible absorption, Impedance measurement 4.2. Brunauer - Emmett - Teller (BET) Surface Area Analysis, Energy dispersive X - ray (EDX), X - ray photoelectron spectroscopy (XPS) and Photoluminescence.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
V	APPLICATIONS OF NANOMATERIALS AND NANOCOMPOSITES 5.1. Nanophotonics and Devices: Imaging of cancer cells, Biological tags and Targeted nano drug delivery system. Issues and Challenges of functional Nanostructured Materials for electrochemical Energy Storage Systems - 5.2. Nanosensors: Sensors based on physical properties - Electrochemical sensors, Sensors for aerospace, defence and Biosensors. Energy: Solar cells, LEDs and Photovoltaic device applications. Photocatalytic applications: Environmental Applications: Air purification, Water purifications and Volatile organic pollution degradation. Carbon nanotubes: Field emission, Fuel cells and Display devices.	15	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

Text Books

1.	Viswanathan, B. (2006). Structure and Properties of Solid state materials (2nd ed.). Alpha Science
	International.

- 2. Pradeep, T. (2017). Nano: The Essentials: Understanding Nanoscience and Nanotechnology. McGraw Hill Education.
- 3. David.B. Williams and C. Barry Carter (2016) *Transmission Electron microscopy : A Textbook for Materials Science,* Springer International Publishing Switzerland
- 4. Hellborg, D. Brunt, R. Hellborg H. J. Whitlow O. Hunderi (1992) *SEM Surface characterization A users source book.*
- David Brandon & Wayne D. Kaplan (2003) Microstructural characterization of materials, John Wiley & sons, 2nd edition.

Suggested Readings

- 1. Ajayan, P. M., Schadler, L. S., & Braun, P. V. (2006). *Nanocomposite Science and Technology*. Wiley-VCH.
- 2. Schmid, G. (2011). Nanoparticles: From theory to application (2nd ed.). Wiley.
- 3. Kulkarni, S. K. (2014). Nanotechnology: Principles and practices (3rd ed.). Springer.
- 4. Viswanathan, B. (2009). Nano materials. Narosa.
- 5. Bandyopadhyay, A. K. (2009). Nano materials (2nd ed.). New Age International.
- 6. Brundle, C. R., Evans, C. A., & Wilson, S. (1992). *Encyclopedia of materials characterization: Surfaces, interfaces, thin films*. Butterworth Heinemann.
- 7. Charles P. Poole, J., & Owens, F. J. (2007). Introduction to Nanotechnology. Wiley.
- 8. Schubert, U. S., & Husing, N. (2019). Synthesis of inorganic materials (4th ed.). Wiley.
- 9. Milani, P., & Iannotta, S. (2012). Cluster beam synthesis of Nanostructured materials. Springer

Web Resources

- 1. https://en.wikipedia.org/wiki/Nanotechnology
- 2. <u>https://ec.europa.eu/jrc/en/research-topic/nanotechnology</u>
- 3. http://www.hse.gov.uk/nanotechnology/
- 4. https://www.nano.gov/nanotech-101/
- 5. http://www.crnano.org/whatis.htm
- 6. <u>http://www.nnci.net</u>
- 7. https://ec.europa.eu/programmes/horizon2020/en/h2020-section/nanotechnologies
- 8. http://www.research.ibm.com/pics/nanotech/defined.shtml
- 9. https://www.nsf.gov/crssprgm/nano/

Course Outcomes	(COs) and Cogni	tive Level Mapping
------------------------	-----------------	--------------------

COs	CO Description	Cognitive Level
CO 1	Classify nanoparticles based on various factors.	K1, K2
CO 2	Use the different methodologies for synthesis and characterization of nanomaterials.	К3
CO 3	Differentiate between pure and composite nanoparticles and their uses.	K4
CO 4	Select a particular methodology and material for synthesis, characterization and analysis.	К5
CO 5	Design or develop sensors for different applications. Catering to the needs of the recent developments.	K6

Course Code	РРНЗМС03		
Course Title	PHYSICS PRACTICAL- III		
Credits	4		
Hours/Week	8		
Category	Major Core (MC) – Practical		
Semester	III		
Regulation	2022		
 Course Overview 1. This course highlights the importance of having hands-on experience to measure physical quantities and use practical methods to understand theoretical concepts. 2. It helps students to acquire experimental abilities, which are essential for physicists. 3. Students will be able to use various components and equipment. 4. Students will also be able to work efficiently and safely in a laboratory, both individually and in groups 			
 Course Objectives Determine wavelength of monochromatic source and laser parameters using appropriate apparatus. Establish 'e' and 'e/m' values using corresponding experimental setup. Construct simple interfacing devices to microprocessor 8086 and execute assembly language programs. Understand the usage of microcontroller 8051, its programming and applications. Develop programs to solve numerical method problems using Python programming language. 			
Prerequisites Basic knowledge on usage of scientific apparatus.			

S. No	List of experiments	Hours Per	Cos	Cognitiv
		week Per		e
		student		levels
		Per Expt.		
1	Michelson Interferometer – Wavelength of monochromatic			
1	source.			
	Milikan oil dron method – electronic charge 'e'			
2	Winkan on drop method – electronic charge 'e			
3	Hydrogen spectra – Rydberg's constant		CO1,	K1,
4	Laser Beam parameters	0	CO2, CO3,	К2, К3,
5	Viscosity of a liquid - Meyer's disc	8	CO4, CO5	K4, K5.
6	Constant deviation spectrograph – Iron arc spectra			K6
7	e/m Magnetron method			
8	Inverter - Low D.C. to High A.C. converter			
9	A/D - Binary counter - IC 7493			
10	555 Timer - Temperature control (thermistor)			
11	OP-AMP Waveform generators			
12	Turbo Debugger - Arrays manipulations			
13	Microprocessor 8086 - Interface (A/D - Counter)			
14	Microprocessor 8086 - Interface (Stepper motor control)			
15	Microprocessor 8086 - Interface (7 segment display multiplexing)			
16	Microprocessor 8086 - Interface (7x5 LED dot matrix display)			
17	Micro controller 8051 - Introduction I			
18	Micro controller 8051 - Introduction II			
19	Microcontroller 8051 – Interface – Home Appliance			

20	Microcontroller 8051 – Interface – LEDs and switches				
21	Microcontroller 8051 – Interface – seconds counter				
22	Python – Arrays				
23	Python – Matrices				
24	Python – Numerical methods I and II				
25	Python – Advanced applications – bot automation- Statistical methods				
The sta list or	aff in-charge shall select any 14 from this list. The remaining 2 can be new experiments included by the staff in-charge with pr	experiments c rior approval of	an be choser f the departn	n from this nent.	
Sugge	sted Readings				
1	. Singh, S. P. (1999). Advanced Practical Physics (23rd ed.). I	Pragati Prakash	an.		
2	2. Nelkon, M., & Ogborn, J. M. (1978). <i>Advanced level Practical Physics</i> (4th ed.). Pearson Education				
3	3. Chattopadhyay, D., & Rakshit, P. C. (2017). <i>An Advanced course in Practical Physics</i> (10th ed.).				
	New Central Book Agency.				
4	. Squires, G. L. (2001). Practical Physics (4th ed.). Cambridge	e University Pr	ess.		
Web I	Resources				
1	. https://vlab.amrita.edu/?sub=1&brch=189∼=1106&cnt=	<u>1</u>			
2	. https://vlab.amrita.edu/?sub=1&brch=189∼=342&cnt=1				
3	. https://vlab.amrita.edu/?sub=1&brch=195∼=359&cnt=1				
4	4. https://vlab.amrita.edu/?sub=1&brch=195∼=357&cnt=1				
5	5. https://ae-iitr.vlabs.ac.in/exp/function-generator/pretest.html				
6	. http://vlabs.iitb.ac.in/vlabs-dev/labs/8051-Microcontroller-Labs/8	ab/labs/exp1/in	dex.php		
7	. http://vlabs.iitb.ac.in/vlabs-dev/labs/python-basics/index.htm	<u>1</u>			
8	. http://vlabs.iitb.ac.in/vlabs-dev/labs_local/microprocessor/lab	bs/exp3/introdu	action.php		

COs	CO Description	Cognitive Level
CO 1	Define the objective of the experiment and explain the various parameters in the formula for determining a material's physical property.	K1, K2
CO 2	Construct the experimental setup and carry out the experiment	K3
CO 3	Make a list of the observations and repeat the experiment to compute the physical quantity using the appropriate formula.	K4
CO 4	Interpret the obtained result and sketch the variations wherever required.	K5
CO 5	Analyze the result of the experiment to build or create a piece of equipment or a device for use in project/research activity.	K6

Course Code	PPH4MC01
Course Title	Quantum Mechanics -II
Credits	5
Hours/Week	5
Category	Major Core (MC)
Semester	IV
Regulation	2022

Course Overview

- 1. This course intends to give an outline of the study of perturbed system from microscopic point of view.
- 2. Aims at providing the underlying principles of behaviour of systems at relativistic speeds.
- 3. An introduction to the conservation laws and their associated symmetries.
- 4. An extension of quantum mechanics to a system of particles and theories of approximation methods to many body problems.
- 5. An introduction to the basics of field quantisation and Feynmann diagrams.

Course Objectives

- 1. To calculate the transition probabilities and set selection rules for spectral transition for different types of time dependent perturbation.
- 2. To construct and solve Dirac equation for a free particle and particle in a central potential.
- 3. To construct the wave function for a collection of identical particles. Also appreciate the conservation laws associated with different symmetries.
- 4. To introduce approximation methods for solving many body problem.
- 5. To learn the concept of second quantization for different fields. Also learn to draw Feynman diagrams for various scattering phenomena.

	1. A thorough understanding of mechanics.
Prerequisites	2. Knowledge of partial differential equation and variable separable method
	3. Commendable knowledge of integral and differential calculus.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	TIMEDEPENDENTPERTURBATIONTHEORYGeneral theory of time-dependent perturbation - first order perturbation - constant perturbation - harmonic perturbation - absorption and emission of radiation: Hamiltonian of a charged particle in electromagnetic field - electric dipole approximation - transition probability - Einstein coefficients- spontaneous and stimulated emission	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	Relation rules- Rayleigh scatteringRELATIVISTIC QUANTUM MECHANICSK - G equation – interpretation – particles in aCoulomb field – Dirac's equation for a free particle– Dirac's matrices – covariant form of Dirac'sequation – negative energy states – probabilitydensity – plane wave solution – spin of Dirac'sparticle – magnetic moment of electron – spin-orbitinteraction – radial equation for electron in acentral potential -Dirac equation and solution for amass-less particle – Hydrogen atom – Lamb shift	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	IDENTICAL PARTICLES, SYMMETRIES AND CONSERVATION LAWS Identical particles in quantum mechanics – exchange degeneracy – permutation operators – two - particle system – symmetric and anti- symmetric kets – system with arbitrary number of particles – parity - Symmetry transformations – conservation laws and degeneracy – discrete symmetries – parity or space inversion – parity conservation - time reversal.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	MANYELECTRONSYSTEMANDAPPROXIMATION METHODSCentral field approximation-Thomas-Fermi modelof the atommolecular orbital method (MO)-MOtreatment of hydrogen molecule ion and hydrogen	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	malagula valance hand treatment of he-last				
	molecule- valence bond treatment of hydrogen				
	(LCAQ) mothed by Hartness constitution of atomic orbitals				
	(LCAO) methods- Hartree - equation- Hartree-				
	Fock equation- Born-Oppenheimer				
	approximation-exchange correlation effects in				
	many electron system- density functional theory.				
	ELEMENTS OF FIELD QUANTIZATION		CO1,		
	Introduction – quantization of free electromagnetic		СО2,		
V	field - creation and annihilation operators -		СОЗ,		
	Lagrangian field – non-relativistic fields –	13	СО4,		
	relativistic fields - Klein - Gorden field - Dirac's		CO5	K1, K2, K3, K4, K5, K6	
	field - electromagnetic field - interacting fields -				
	Feynmann diagrams – electron- photon interaction				
	scattering: Coulomb scattering – Moller scattering				
	- Bhabha scattering - Bremstrauhlung and pair				
	production.				
Text Bo	ooks				
1.	Shankar, R. (2011). Principles of Quantum mechani	ics (2nd ed.). Spring	ger.	
2.	2. Bransden, B. H., & Joachain, C. J. (2012). <i>Quantum mechanics</i> (2nd ed.). Pearson.				
3.	3. Zettili, N. (2009). Quantum mechanics: Concepts and Applications (2nd ed.). Wiley.				
4. Arul Dhas, G. (2008). Quantum mechanics (2nd ed.). PHI.					
5.	Agarwal, B. K., & Prakash, H. (2005). Quantam me	chanics (5t	h ed.). P	HI.	
6.	Kakani, S. L., & Chandalia, H. M. (2004). Quantum	n mechanics	: Theory	and Problems (3rd ed.).	
	Sultan Chand and Sons.		-		
7.	Thankappan, V. K. (1993). Quantum mechanics (2n	d ed.). New	Age In	ternational.	
Suggest	ted Readings				
1.	Mathews, P. M., & Venkatesan, K. (2017). A Textbo	ook of Quar	ntum mee	chanics (2nd ed.). Tata	
	McGraw-Hill Education.				
2.	Griffiths, D. J., & Schroeter, D. F. (2019). Introduct	tion to Qua	ntum me	chanics (3rd ed.).	
	Cambridge University Press.				
3.	3. Tannoudji, C. C., Diu, B., & Laloe, F. (1977). <i>Quantum mechanics (Vol.1)</i> (2nd ed.). Wiley-VCH.				
4.	4. Carlson, T. (2013). <i>Photoelectron and auger Spectroscopy</i> . Springer.				
5.	5. Chatwal, G. R., & Anand, S. K. (2010). Spectroscopy: Atomic and molecular (5th ed.). Himalava				
	Publishing House.				
6.	Hollas, J. M. (2004). Modern spectroscopy (4th ed.)	. Wiley.			

Web Resources

- 1. <u>https://www.youtube.com/watch?v=oyKBgby6RGE</u>
- 2. https://bit.ly/38Qq9Ps
- 3. https://www.digimat.in/nptel/courses/video/115106065/L25.html
- 4. https://www.digimat.in/nptel/courses/video/115108074/L01.html
- 5. https://www.digimat.in/nptel/courses/video/104101124/L01.html
- 6. <u>https://www.youtube.com/watch?v=Gj7RWTLgb2o</u>

COs	CO Description	Cognitive Level
CO 1	Identify and summarize all the rules of the new algebra. Apply the new algebra to interpret the experimental results.	K1, K2
CO 2	Construction of Dirac's equation, its solution and interpretation of the results.	К3
CO 3	Classify and correlate the different symmetries associated with conservation laws, the fields and their quanta.	K4
CO 4	Choose appropriate approximation methods to evaluate the total energy or electronic structure of many body problems.	К5
CO 5	Integrate all the concepts to facilitate problem solving with an aim to appreciate the new concepts.	K6

Course Code	PPH4MC02		
Course Title	Solid State Physics		
Credits	05		
Hours/Week	05		
Category	Major Core (MC) - Theory		
Semester	IV		
Regulation	2022		

Course Overview

- 1. An introduction to the various symmetries in 3 dimension crystalline materials, their classification and experimental method of determining crystal structure will be given.
- 2. The theoretical models involving lattice contribution to the study of elastic and thermal properties of the materials will be dealt.
- 3. The dynamics of the collective electrons behavior in explaining the transport and dielectric phenomena will be discussed in detail.
- 4. A detailed discussion will be on the theoretical principles behind the origin of magnetism and classification and properties of magnetic materials.
- 5. The microscopic physics behind the novel phenomena of superconductivity and associated properties, and an insight into the high temperature superconductivity will be discussed.

Course Objectives

- 1. To understand the various crystal structures, the microscopic theory behind the diffraction technique.
- 2. To distinguish materials as metals, semiconductor and insulator using band structure and study their transport phenomena.
- 3. To provide theoretical and experimental means of determining the Fermi surface an exclusive property of conductors.
- 4. To study the theories of different types of magnetism and dielectrics
- 5. To learn the theories supporting superconducting phenomenon and its applications.

Prerequisites	Basic knowledge in Physics
---------------	----------------------------

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	CRYSTAL STRUCTURE AND LATTICE DYNAMICS Lattice - translation symmetry –Mathematical interpretation of symmetry operations- 3D crystal systems - Bravais lattices - Reciprocal lattice - Miller indices; X Ray Diffraction - Bragg's law (Vector form) - atomic scattering factor - structure factor - extinction rules for BCC, FCC, ZnS and diamond structure. Lattice vibrations for a linear mono atomic lattice - linear diatomic lattice – acoustical and optical modes - extinctions and optical branch	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
	in ionic crystals - quantisation of lattice vibrations - inelastic scattering of phonons.			
Π	THEORYOFMETALSANDSEMICONDUCTORBrillouin zones -electrons in periodicpotential -Bloch'stheorem - Kronig - Penney model - nearly freeelectron model - effective mass - zone schemes- band model of metal-Monovalent metals-optical properties of monovalent metals,semiconductor and insulator. Intrinsicsemiconductor - carrier concentration -impurity semiconductors (n and p type) -carrier concentration -Junction,Semiconductorjunction,Semiconductor-Semiconductorjunction.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	TRANSPORTPHENOMENAANDDIELECTRIC PROPERTIESThermal conductivity of lattice - of freeelectrons - Fermi surface - effect of electricfield on Fermi surface - effect of magnetic fieldon Fermi surface - Quantization of ElectronOrbits: Experimental Study of Fermi Surfaces-	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	Hall effect dipole moment - atomic			
	nolorizability Classius - Mossotti equation -			
	theory of electronic polarisation - frequency			
	dependent relevizability forre electricity			
	dependent polarizaonity - reno electricity.		~ ~ 1	
	MAGNETISM		CO1,	
	Larmor diamagnetism - Langevin's theory of		CO2,	
_	para magnetism - molecular field theory of		CO3,	
IV	ferromagnetism -domain theory of hysteresis -		CO4,	K1, K2, K3, K4, K5, K6
	anti-ferromagnetism- and Ferrimagnetism.	13	CO5	
	Magnetostriction effect, Nano magnetic			
	materials, Thermal stability, Effect of size on			
	fine particles- Weiss molecular field			
	interaction theory. Giant Magneto Resistance			
	effect, TMR Effect, Spin polarized tunneling,			
	Magnetoresistive Random Access Memory			
	(M-RAM)			
	CRYSTAL STRUCTURE AND LATTICE		CO1,	
	DYNAMICS		CO2,	
V	Lattice - translation symmetry -Mathematical		СОЗ,	
	interpretation of symmetry operations- 3D	13	CO4,	K1, K2, K3, K4, K5, K6
	crystal systems - Bravais lattices - Reciprocal		CO5	
	lattice - Miller indices; X Ray Diffraction -			
	Bragg's law (Vector form) - atomic scattering			
	factor - structure factor - extinction rules for			
	BCC, FCC, ZnS and diamond structure.			
	Lattice vibrations for a linear mono atomic			
	lattice - linear diatomic lattice – acoustical and			
	optical modes - extinctions and optical branch			
	in ionic crystals - quantisation of lattice			
	vibrations - inelastic scattering of phonons.			
Text Boo	ks		·	
1. F	K. Puri and V.K. Babber.(2005). Solid State Phy	<i>vsics (</i> 3 rd Edit	tion). S. C	Chand and company Ltd.
2. J	ohn Sydney Blakemore. (2005). Solid State Physic	cs. Cambridge	e Univers	sity press.
3. Dr. Ajay Kumar Saxena.(2005). Solid State Physics. MacMillan India Ltd.				

Suggested Readings

- 1. Mircea S. Rogalski, Stuart B. Palmer..(2000). Solid State Physics. Gordan& Breach
- 2. Mohammad Abdul Wahab (2018). *Solid State Physics: Structure and properties of materials*. (3rd edition). Narosa Publishing House Pvt. Ltd.
- 3. Charles Kittel.(2015). Introduction to Solid State Physics(8th Edition). John Wiley & sons.
- 4. Neil. W. Ashcroft, N. David Mermin.(2010) Solid state Physics. Harcourt Asia PTE Ltd.

Web Resources

- 1. https://www.electrical4u.com/thermal-conductivity-of-metals/
- 2. https://insightsimaging.springeropen.com/articles/10.1186/s13244-021-01125-z
- 3. http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scond.html
- 4. https://bit.ly/38Qq9Ps

COs	CO Description	Cognitive Level
CO 1	Classify nanoparticles based on various factors.	K1, K2
CO 2	Use the different methodologies for synthesis and characterization of nanomaterials.	К3
CO 3	Differentiate between pure and composite nanoparticles and their uses.	K4
CO 4	Select a particular methodology and material for synthesis, characterization and analysis.	К5
CO 5	Design or develop sensors for different applications. Catering to the needs of the recent developments.	K6

Course Code	PPH4MC03			
Course Title	Nuclear Physics			
Credits	05			
Hours/Week	05			
Category	Major Core (MC) – Theory			
Semester	IV			
Regulation	2022			
Course Overview 1. The discip along with	bline of physics that educates about atomic nuclei and their constituents and interactions in the familiarization of other forms of nuclear matter.			
 Course Objectives 1. To acquire knowledge on nuclear size, shape and forces like physical properties. 2. To understand nuclear model and reactors 3. To study nuclear reactions and background concepts 4. To understand radioactive concepts and theories 5. To Explore and study elementary particles and their models 				
Prerequisites	Fundamental knowledge in Nuclear Physics			

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	NUCLEAR SIZE, SHAPE AND FORCES Introduction to nuclear properties – nuclear size determination - Electron scattering method – Electric Quadrupole moment. Properties of Nuclear forces: Energy levels of light nuclei and the hypothesis of the charge independence of nuclear forces - Two - nucleon potentials Ground state of the deuteron - ISO - spin formalism - Meson theory of nuclear forces - Exchange forces - Nucleon-nucleon scattering singlet and triplet parameters.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
П	NUCLEAR MODELS Liquid drop model - Semi - empirical mass formulas and nuclear fission - Binding energy - Weizsacker mass formula - Levy's formula - Atomic masses and its significance - Shell model - Magic numbers - Optical model - Unified model - Barrier penetration - The collective nuclear model.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
III	NUCLEAR REACTIONS Resonance Scattering and Nuclear reaction cross-section - Breit-Wigner dispersion formula - The compound nucleus - Continuum theory - Absorption cross -section at high energies Stability of heavy nuclei – Bohr - Wheeler theory of fission- Activation energy for fission - Controlled chain reaction – Basic ideas of Nuclear Reactors.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6
IV	RADIOACTIVITY FUNDAMENTALS Gamow theory of alpha decay – Types of Beta decay - Energy spectrum - Fermi theory - Fermi and Gamow - Teller selection rules - Fermi- Curie plot - Non - conservation of parity – Pion condensation Nuclear isomerism.	13	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6

	ELEMENTARY PARTICLES		CO1,		
	Classification - types of interaction hadrons		CO2,		
V	and leptons - symmetries and conservation		CO3,		
	laws - CP invariance - Time Reversal - CPT	13	CO4,	K1, K2, K3, K4, K5, K6	
	theorem - classification of hadrons - Quark		CO5		
	model – Gellman Okubo mass formula for				
	octets and decuplet hadrons - charm, bottom,				
	top quarks - Elementary concepts of weak				
	interactions.				
Text Boo	oks				
1. 1	Nuclear Physics, D. C. Tayal, Himalaya Publishin	g House, M	lumbai I	Edition:, 2011.	
2.	Nuclear physics: Theory and Experiment, Radha	Raman Roy	y, B.P. 1	Nigam New Age International,	
	Chennai (1st Ed.) 2008.				
3.	Introduction to Elementary Particles, David Jeffer	y Griffiths,	Wiley V	/CH (2nd Ed.) 2008.	
4. 1	Nuclear and Particle Physics: An Introduction, B I	R Martin, Jo	ohn Wile	ey & Sons (2nd Ed.) 2011.	
5.	Elementary Particle Physics in a Nutshell, Christo	pher G Tull	ly, Princ	eton University Press 2011.	
6.	Concepts of Nuclear Physics, B. B. Cohen, TMGH	I, Bombay,	1971.		
Suggeste	d Readings				
1. 1	Principles of Nuclear Reactor Engineering, Samuel	Glasstone,	Van No	strand ACS Publications 1956.	
2.	Atomic Nucleus, R. D. Evans, Mcgraw-Hill NY. 1	955.			
3. "	Theoretical Nuclear Physics, J. M. Blatt and V. F.	Weisskopf	, Berlin	1979.	
4.	4. Introduction to Nuclear Physics, H. Enge, Addision-Wesley Reading MA. 1975.				
5. Nuclear Structure, A. Bohr and B. R. Mottelson, Benjamin Reading, Vol. I (1969) and Vol.II (1975).					
Web Res	Web Resources				
1.	<u>main.pdf (soton.ac.uk)</u>				
2.	2. Nuclear Shell Model of an Atom - Theory, Explanation, Difference Between Shell Structure of				
;	Nuclei and Shell Structure of Atom (byjus.com)				
3.	3. Microsoft Word - Ch03-Radioactivity.docx (lbl.gov)				

4. Elementary particles in nuclear physics (uwo.ca)

COs	CO Description	Cognitive Level
CO 1	Identify and summarize all the rules of the new algebra. Apply the new algebra to interpret the experimental results.	K1, K2
CO 2	Construction of Dirac's equation, its solution and interpretation of the results.	K3
CO 3	Classify and correlate the different symmetries associated with conservation laws, the fields and their quanta.	K4
CO 4	Choose appropriate approximation methods to evaluate the total energy or electronic structure of many body problems.	К5
CO 5	Integrate all the concepts to facilitate problem solving with an aim to appreciate the new concepts.	K6
COURSE DESCRIPTOR

Course Code	PPH3VA01
Course Title	MATLAB Programming
Credits	2
Hours/Week	2
Category	Value Added course
Semester	III
Regulation	2022

Course Overview

- 1. The course utilizes the MATLAB environment to provide students with a working knowledge of computer-based problem-solving methods.
- 2. It focusses mainly on problem solving skills using computational tools relevant to science and engineering, including programming and numerical analysis techniques.
- 3. It envisages the students to outline, write, test, and debug computer programs to solve problems and display results, with emphasis on proper documentation of computer code and reports.
- 4. Common examples and applications of physics and engineering are used throughout the course
- 5. This course offers heterogeneous environment to the students namely electrical, biomedical, mechanical and undeclared engineering students.

Course Objectives

- 1. To provide students an understanding of the expectations of industry through programming knowledge.
- 2. To improve employability skills of science and engineering students.
- 3. To bridge the skill gaps and make students industry ready for competing with software skills.
- 4. To provide an opportunity to students to develop inter-disciplinary skills using computational techniques.
- 5. To nurture students to gain valuable experience with an effective industry standard tool that is useful throughout the course.

Prerequisites Fundamental knowledge in computer operations

UNIT	CONTENT	HOURS/	COs	COGNITIVE
		WEEK		LEVEL
	INTRODUCTION TO PROGRAMMING IN		CO1,	
	MATLAB		CO2,	K1, K2, K3, K4,
	Variables- Scripts- and Operations-Basic scalar		СОЗ,	K5, K6
Ι	operations- Built in functions-Element wise	2	CO4,	
	functions-vector operations-Vector functions-		CO5	
	Matrices -Indexing- Plotting			
	VISUALIZATION AND PROGRAMMING		CO1,	
			CO2,	K1, K2, K3, K4,
	User defined functions- Relational operators-		СОЗ,	K5, K6
II	Conditional operators-Types of plotting- Cartesian	2	CO4,	
	plot- 3d line plot- sub plots - Multiple plots -		CO5	
	Visualizing matrices – Color maps – Surface Plots			
	-Surf – contour			
	SOLVING EQUATIONS AND CURVE		CO1,	
	FITTING		CO2,	K1, K2, K3, K4,
	Systems of Linear Equations- Matrix		СОЗ,	K5, K6
III	Decompositions-Polynomial – Polynomial	2	CO4,	
	operations – Polynomial fitting – Non-linear root		CO5	
	finding – Minimizing a function – Numerical			
	Differentiation-Numerical integration- ODE			
	Solvers- Higher order equations			
	ADVANCED METHODS		CO1,	
	Probability and statistics – random numbers -		CO2,	K1, K2, K3, K4,
	advanced data structures – Cells and structures –		CO3,	K5, K6
IV	Arrays – reading and writing images – animation-	2	CO4,	
	videos -debugging-performance measures	2	CO5	
	SYMBOLICS, SIMULINK®, FILE I/O,		CO1,	
• 7			CO2,	K1, K2, K3, K4,
V	Symbolic math toolbox-symbolic variables-	2	CO3,	КЭ, Кб
	symbolic expressions-Simulink library browser-	2	CO4,	
	connections- Block specifications-toolboxes-		005	
	reading and writing I/O files- Building GUIs-			
	Developing and publishing software.			

Text Books
1. Krister Ahlersten, 2012, An Introduction to Matlab – Ist edition
2. Subhas Chakravarty, 2012, Technology and Engineering Applications of Simulink, - InTech, I Edition.
3. <u>Stephen J. Chapman</u> , 2015, MATLAB Programming for Engineers, Cengage Learning, 5th Edition
 Stormy Attaway, 2013, Matlab: A Practical Introduction to Programming and Problem Solving. Butterworth-Heinemann: 3rd edition.
 <u>Jim Sizemore</u>, <u>John Paul Mueller</u>, 2014, MATLAB For Dummies, John Wiley & Sons, 1st Edition.
 Misza Kalechman, Practical MATLAB Basics for Engineers (Practical Matlab for Engineers), CRC Press; 1st edition.
Suggested Readings
1. Serhat Beyenir, 2012, A Brief Introduction to Engineering Computation with MATLAB, Rice University, I Edition.
2. Todd Young, Martin J. Mohlenkamp, 2017, Introduction to Numerical Methods and Matlab Programming for Engineers, - Ohio University, Ledition
3. Jan Valdman, 2016, Applications from Engineering with MATLAB Concepts, InTech. I edition.
4. Kelly Bennett, 2014, MATLAB Applications for the Practical Engineer, InTech, I edition.
5. Daniel T. Valentine, Brian Hahn, Essential MATLAB for Engineers and Scientists, Academic Press: 6th edition
 6. L. F. Shampine, I. Gladwell, S. Thompson, 2003, Solving ODEs with MATLAB, Cambridge University Press; 1st edition
Web Resources
1. Getting Started with MATLAB - Video - MATLAB (mathworks.com)
2. Introduction to MATLAB - Video - MATLAB (mathworks.com)
3. Analyzing and Visualizing Data with MATLAB - Video - MATLAB (mathworks.com)
4. <u>Beyond Excel: Enhancing Your Data Analysis with MATLAB Video - MATLAB</u> (mathworks.com)
5. Data Science with MATLAB Video - MATLAB (mathworks.com)
6. Preprocessing Your Data in MATLAB Video - MATLAB & Simulink (mathworks.com)
7. How to Import Data from Files Programmatically - Video - MATLAB (mathworks.com)
8. Using Basic Plotting Functions - Video - MATLAB (mathworks.com)
9. How to Create a MATLAB Function - Video - MATLAB (mathworks.com)
10. Functions with Multiple Inputs and Outputs - Video - MATLAB (mathworks.com)
11. Managing Code in MATLAB: Functions of Variable Numbers of Inputs and Outputs - Video -
MATLAB (mathworks.com)
12. The Complete MATLAB Course: Beginner to Advanced! - YouTube
13.MATLAB Complete Course Learn MATLAB Learn MATLAB in 6 Hours - YouTube

110 | P a g e

٦

COs	CO Description	Cognitive Level
CO 1	Understand and apply the variables and built in functions used in MATLAB	K1, K2
CO 2	Identify and visualize the plotting methods using surf, contour and 3d line plotting.	К3
CO 3	Applying MATLAB functions to solve differential equations and create new customized functions for solving equations	K4
CO 4	Analyze the problems and solve problems using SIMULINK	K5
CO 5	Design Graphical User Interface for user friendly environment to interface coding and logics to publish it as a software tool for potential users.	K6

Course Outcomes (COs) and Cognitive Level Mapping

COURSE DESCRIPTOR

Course Code	PPH4PJ01
Course Title	PROJECT
Credits	15
Hours/Week	5
Category	Project
Semester	IV
Regulation	2022

CL AND CO BASED CIA QUESTION PAPER FORMAT

SECTION	MARKS	Q. NO	K1	K2	K3	K4	K5	K6
А	Answer ALL	1	+					
	(6 x 2= 12)	2	+					
		3	+					
		4		+				
		5		+				
		6		+				
В	Answer 1 out of 2	7			+			
	$(1 \times 7 = 7)$	8			+			
С	Answer 1 out of 2	9				+		
	$(1 \times 7 = 7)$	10				+		
D	Answer 1 out of 2	11					+	
	(1 x 12 = 12)	12					+	
Е	Answer 1 out of 2	13						+
	$(1 \times 12 = 12)$	14						+
No. of CL based Questions with Max. marks			3 (2)	3 (2)	1 (7)	1 (7)	1 (12)	1 (12)
No. of CO based Questions with Max.			C	CO 1		CO 3	CO 4	CO 5
marks			6	6 (12)	1 (7)	1 (7)	1 (12)	1 (12)

113 | P a g e

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 60034 Department of Physics FIRST CONTINUOUS ASSESSMENT EXAMINATION, JUNE, 2022 PPH4 MCO1 QUANTUM MECHANICS II

Date: 15-06-2022 II M.Sc (Physics) TIME: 10.00 am TO 11.30 am Max: 50 marks

 $6 \ge 2 = 12$ marks

SECTION A

Answer ALL questions:

- 1 State the principle of LASER (K1)
- 2 Distinguish between stimulated and spontaneous emission.(K2)
- 3 Find the velocity of an elementary particle whose mass is 10 times its rest mass?(K1)
- 4 Explain the adiabatic theorem (K2)
- 5 What is dipole approximation?(K1)
- 6 Explain Bremsstrahlung and pair production (K2)

SECTION - B

Answer any **ONE** questions

- 7 Solve the Dirac equation for a free particle and obtain its energy spectrum. (K3)
- 8 A pion at rest decays into a muon and a neutrino. Find the energy of the outgoing muon in terms of the two masses, $m\pi$ and $m\mu$ (assume $m\nu=0$). the velocity of the outgoing muon (K3)

SECTION – C

Answer any **ONE** questions

- 9 A system in an unperturbed state n is suddenly subjected to a constant perturbation *H*'(r) which exists during time 0 to t. Examine the probability for transition from state n to state k and show it varies simple harmonically.(K4)
- 10 List and explain the configuration space rules for Feynman graphs.(K4)

114 | P a g e

1x7 = 7marks

1x7 = 7marks

SECTION D

Answer any **ONE** question:

- 11 Evaluate the time dependent perturbation theory with reference to sinusoidal perturbation and obtain an expression for transition probability.(K5)
- 12 Determine the time dependent perturbation theory with reference to harmonic perturbation and obtain an expression for transition probability (K5)

SECTION E

Answer any **ONE** question:

5

 $1 \ge 12 = 12 \text{ marks}$

 $1 \ge 12 = 12 \text{ marks}$

- 13 Elaborate in detail the structure of space time. (K6)
- 14 Formulate the procedure for quantization of complex scalar field. From the discussion explain the annihilation, creation and particle number operators (K6)

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED END SEMESTER EXAMINATION QUESTION PAPER FORMAT (PG)

SECTION		Q. NO	K1	K2	K3	K4	K5	K6
Α	(4 x 5 =20)	1	+	+				
	Answer ALL	2	+	+				
		3	+	+				
		4	+	+				
	$(2 \times 10 = 20)$	5			+			
	Answer 2 out of 4	6			+			
В		7			+			
		8			+			
С	$(2 \times 10 = 20)$	9				+		
	Answer 2 out of 4	10				+		
		11				+		
		12				+		
D	$(1 \times 20 = 20)$	13					+	
	Answer 1 out of	14					+	
	2							
Е	$(1 \times 20 = 20)$	15						+
	Answer 1 out of 2	16						+
No. of CL based Questions with Max. marks		5 (10)	5 (10)	2 (20)	2 (20)	1 (20)	1 (20)	
No. of CO based Questions with Max. marks			CO)1	CO 2	CO 3	CO 4	CO 5
			10(2	20)	2 (20)	2 (20)	1 (20)	1 (20)

116 | P a g e

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 60034

Department of Physics SEMESTER EXAMINATION, JUNE, 2022 PPH1 MCO1 CLASSICAL MECHANICS

I M.Sc

Duration : 3 hrs

15.06.2022 Max. Marks : 100

	SECTION A							
Answe	er ALL the Questions							
1.	Answer the following (5	$5 \ge 1 = 5$						
a)	Define Hamilton's function.	K1	CO1					
b)	Write down the expression for Coriolis force.	K1	CO1					
c)	What are Inertial and non-inertial frames?	K1	CO1					
d)	Define Poisson bracket of functions A and B with respect to (q,p).	K1	CO1					
e)	Define Inertia tensor.	K1	CO1					
2.	Fill in the blanks (5	x 1 = 5)						
a)	In general, the rigid body has degrees of freedom.	K1	CO1					
b)	In absence of a given component of applied force, the corresponding component of linear momentum of the object is	K1	CO1					
c)	c) The number of independent coordinates required to describe a system is called							
d)	d) The work-energy theorem states that the work done is equal to the change in							
e)	For canonical transformation, the value of Poisson bracket {Q,P} is	K1	CO1					
3.	Match the following, in the following cases $(5 \ge 1 = 5)$							
	System degrees of freedom							
a)	Oxygen molecule - One	K2	CO1					
b)	4 particles moving freely in space - Five	K2	CO1					
c)	A particle is constrained to move along the inner surface	K2	CO1					
	of a fixed hemispherical bowl - Twelve							
d)	Three particles connected by three rigid massless rods - Two	K2	CO1					
e)	A rigid body having two points fixed - Six	K2	CO1					
4.	Write TRUE or FALSE (5 x 1 =	5)						
a)	Constraint in a Rigid body is Rheonomic.	K2	CO1					
b)	Generalized co-ordinates are independent of each other.	K2	CO1					
c)	Earth is always an inertial reference frame.	K2	CO1					

d)	The phase space has only momentum coordinates.	K2	CO1			
e)	The Laplace-Runge-Lenz vector of a planet is always conserved	K2	CO1			
	SECTION B		<u> </u>			
Answ	er any TWO of the following in 100 words (2 x 10 = 20)					
5.	Derive the Euler – Lagrange's equation from DeAlembert's Principle.	K3	CO2			
6.	Using Poisson brackets relation, prove that $[J_x , J_y] = J_z$	K3	CO2			
7.	7. Show that the K.E. of a rotating rigid body in a co-ordinate system of principal axes is given by $T=1/2(I_1 \omega_1^2 + I_2 \omega_2^2 + I_3 \omega_3^2)$					
8.	Write a note on "Infinitesimal canonical Transformations".	K3	CO2			
	SECTION C					
Answ	ver any TWO of the following in 100 words $(2 \times 10 = 20)$					
9.	Analyze the superiority of Lagrangian approach over Newtonian approach.	K4	CO3			
10.	Obtain the Lagrange's equation for a simple pendulum. Deduce the formula for its time period.	K4	CO3			
11.	Calculate the inertia tensor for the system of four point masses 1 gm,2 gm,4 gm and 5 gm located at the points (1 0 0), (1 1 0), (1 2 1), (2 1 -1) c.m.	K4	CO3			
12.	Outline the problem of scattering of charged particles by a coulomb field and obtain Rutherford's formula for the differential cross section	K4	CO3			
	SECTION D		<u> </u>			
Ansv	wer any ONE of the following in 250 words $(1 \times 20 = 20)$					
13.	Set up the equation motion for symmetric top and discuss its results.	K5	CO4			
14.	Formulate Lagrange's equations to find the equation of motion of a compound	K5	CO4			
	pendulum in a vertical plane about a fixed horizontal axis. Hence find the period of					
	small amplitude oscillations of the compound pendulum.					
	SECTION E					
Answ	er any ONE of the following in 250 words (1 x 20 = 20)					
15.	Solve the Euler – Lagrangian equation for two body problem under central force, bring out various conserved quantities and classify the various types of orbit.	K6	CO5			

16.	Construct two coupled pend	Construct two coupled pendulums, and determine				
	a.T and V matrices.	(4 marks)				
	b.The normal frequencies.	(4 marks)				
	c.The normal coordinates.	(4 marks)				
	d.The equation of motion.	(4 marks)				
	e.The eigen vectors with gen	eral solution. (4 marks)				

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED ASSESSMENT METHOD FOR LAB CIA EXAMINATION (PG)

Assessment	Criteria	Marks		COGNITIVE			
		(50)	K1, K2	К3	K4	K5	K6
	Aim, Apparatus and Formula, Formula expansion with units and tabular column	10	+				
CIA Practical Test for 50 marks	Preliminary adjustments, initial set up, observing the reading	20		+			
	Calculation, Verification	15				+	
	Result						+
	Record Note book	5			+		
No. of CL based Questions with Max. marks		1 (10)	1 (20)	1 (5)	1 (10)	1(5)	
No. of CO based Questions with			CO 1	CO 2	CO3	CO 4	CO 5
Max. marks	Max. marks			5 (50)			

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED ASSESSMENT METHOD FOR PG LAB SEMESTER EXAMINATION

Assessment	Criteria	Marks					
		(100)	K1, K2	K3	K4	K5	K6
	Aim, Apparatus,						
	Formula,	20	+				
	Formula						
	expansion with						
Semester	units and tabular						
Practical	column						
Examination	Preliminary						
for 50 marks	adjustments,	40		+			
	initial set up,						
	observing the						
	reading						
	Calculation,						
	Verification	30				+	
	Result						+
	Viva-voce						
		10			+		
No. of CL based Questions with Max. marks		ax. marks	1 (20)	1 (40)	1 (10)	1 (20)	1 (10)
No. of CO based Questions with			CO 1	CO 2	CO 3	CO 4	CO 5
Max. marks							

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 600 034

Department of PHYSICS

PRACTICAL CIA EXAMINATION, JULY, 2021

PHYSICS PRACTICAL I (PG)

I M.Sc. Physics Practical

Time: 9.00 am to 1.00 pm

16.06.2022

Max. Marks: 50

1	Aim, Apparatus and Formula	K1	CO1	5 Marks
2	Formula expansion with units and tabular column	K2	CO1	5 Marks
3	Preliminary adjustments, initial set up, observing the reading	K3	CO2	20 Marks
4	Record Note book	K4	CO3	5 Marks
5	Calculation, Verification and Result	K5, K6	CO4, CO5	15 Marks

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 600 034 Department of PHYSICS SEMESTER EXAMINATION, JUNE, 2022 PHYSICS PRACTICAL I (MC)

I M.Sc. Physics Practical

Time: 9.00 am to 1.00 pm

16.06.2022

Max. Marks: 100

1	Aim, Apparatus and Formula	K1	CO1	10 Marks
2	Formula expansion with units and tabular column	K2	CO1	10 Marks
3	Preliminary adjustments, initial set up, observing the reading	K3	CO2	40 Marks
4	Viva-Voce	K4	CO3	10 Marks
5	Calculation, Verification and Result	K5,	CO4,	30 Marks
		K6	CO5	

LOCF BASED DIRECT ASSESSMENTS

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED CIA QUESTION PAPER FORMAT (PG)

SECTION		Q. NO	COGNITIVE LEVEL (CL)					
			K1	K2	K3	K4	K5	K6
Α	$(5 \ge 1 = 5)$	1(a)	+					
	Answer ALL	(b)	+					
		(c)	+					
		(d)	+					
		(e)	+					
	$(5 \ge 1 = 5)$	2(a)		+				
	Answer ALL	(b)		+				
		(c)		+				
		(d)		+				
		(e)		+				
В	$(1 \times 8 = 8)$	3			+			
	Answer 1 out of 2	4			+			
С	$(1 \times 8 = 8)$	5				+		
	Answer 1 out of 2	6				+		
D	(1 x 12 = 12)	7					+	
	Answer 1 out of 2	8					+	
E	(1 x 12 = 12)	9						+
	Answer 1 out of 2	10						+
No. of CL based Questions with Max. marks			5 (5)	5 (5)	1 (8)	1 (8)	1 (12)	1 (12)
No. of CO based Questions with Max. marks			C	201	CO2	CO3	CO4	CO5
			10	(10)	1 (8)	1 (8)	1 (12)	1 (12)

Forms of questions of Section A shall be MCQ, Fill in the blanks, True or False, Match the following, Definition, Missing letters. Questions of Sections B, C, D and E could be Open Choice/ built in choice/with sub sections. Component III shall be exclusively for cognitive levels K5 and K5 with 20 marks each. CIA shall be conducted for 50 marks with 90 min duration.

COGNITIVE LEVEL (CL) AND COURSE OUTCOME (CO) BASED END SEMESTER EXAMINATION QUESTION PAPER FORMAT (PG)

SECTION		Q. NO	COGNITIVE LEVEL (CL)					
			K1	K2	K3	K4	K5	K6
Α	(5 x 1 = 5)	1(a)	+					
	Answer ALL	(b)	+					
		(c)	+					
		(d)	+					
		(e)	+					
	(5 x 1 = 5)	2(a)		+				
	Answer ALL	(b)		+				
		(c)		+				
		(d)		+				
		(e)		+				
В	$(3 \times 10 = 30)$	3			+			
	Answer 3 out of 5	4			+			
		5			+			
		6			+			
		7			+			
С	(2 x 12.5 = 25)	8				+		
	Answer 2 out of 4	9				+		
		10				+		
		11				+		
D	(1 x 15 = 15)	12					+	
	Answer 1 out of 2	13					+	
Е	$(1 \times 20 = 20)$	14						+
	Answer 1 out of 2	15						+
No. of CL based Questions with Max. marks			5 (5)	5 (5)	3 (30)	2 (25)	1 (15)	1 (20)
No. of CO based Questions with Max. marks			С	01	CO2	CO3	CO4	CO5
			10	(10)	3 (30)	2 (25)	1 (15)	1 (20)

IMPORTANT

- Forms of questions of Section A shall be MCQ, Fill in the blanks, True or False, Match the following, Definition, Missing letters.
- Questions of Sections B, C, D and E could be Open Choice/ built in choice/questions with sub divisions.
- Maximum sub divisions in questions of Sections B, C shall be 2 and 4 in Sections D, E).

TOTAL MARKS DISTRIBUTION OF DIRECT ASSESSMENTS BASED ON CL AND CO (PG)

Course Outcome	CO1		CO2	CO3	CO4	CO5	TOTAL
Cognitive Levels	K1	K2	K3	K4	K5	K6	
CIA 1	5	5	8	8	12	12	50
CIA 2	5	5	8	8	12	12	50
Comp III	-	-	-	-	20	20	40
Semester	5	5	30	25	15	20	100
Total Marks (CL)	15 (6%)	15 (6%)	46 (19%)	41 (17%)	59 (25%)	64 (27%)	240
Total Marks (CO)	30 (12%)		46 (19%)	41 (17%)	59 (25%)	64 (27%)	240