LEARNING OUTCOMES BASED CURRICULUM FRAMEWORK (LOCF) FOR UNDERGRADUATE PROGRAMMES

Department of Chemistry

LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600034

PREFACE

The curriculum of undergraduate chemistry has been designed to explain the concepts in various branches of chemistry such as physical, inorganic, organic chemistry, etc. The purpose of the outcome-based education is meant to provide an exposure to the fundamental aspects in different branches of chemistry and its applications, keeping in mind the growing needs for higher education, employability, entrepreneurship and social responsibility. The periodical restructuring of the syllabi is carried out to fulfill the requirements of graduate attributes, qualification descriptors, programme learning outcomes and course-level learning outcomes.

The outcome-based education enriches the curriculum to deliver the basic principles, synthetic strategies, mechanisms and application-oriented learning for the benefit of students. It also includes self-learning module, minor projects and industrial internship to enable students to get equipped for higher studies and employment.

The programme also includes training to students for seminar presentation, preparation of internship reports, hands-on training in lab courses, skills to handle instruments, synthesis and its analysis, developing leadership qualities, organization and participation in the interdepartmental academic competitions. The allied papers provide a platform to strengthen the understanding of the core subjects. The non-major elective courses offer chances to learn and augment interest in other related fields.

The outcome-based curriculum is intended to enrich the learning pedagogy to global standards. ICT enabled teaching-learning platforms are provided to students along with the interaction of international scientists. The seminars periodically delivered by industrialists, subject experts and former professors would certainly help the students to update with latest technology/trends in different fields of chemistry.

The exposure to the industrial internship and MoUs with industries can open an avenue for a start-up and its progress would be followed regularly. The OBE based evaluation methods will reflect the true cognitive levels of the students as the curriculum is designed with course outcomes and cognitive level correlations as per BLOOM's Taxonomy.

CONTENTS

S. No	Content	Page
1.	Vision and Mission of Loyola college	5
2.	Vision and Mission of the Department	5
3.	Programme Educational Objectives (PEOs)	6
4.	Programme Outcomes (POs)	7
5.	Programme Specific Outcomes (PSOs)	8
6.	UG CBCS Curriculum Template	9
7.	UG Overall Course Structure	10
8.	Course Descriptors (Offered by the Department)	
(1)	UCH 1501 Basic Concepts in Inorganic Chemistry	14
(2)	UCH 1502 Analytical Chemistry	18
(3)	UCH 1503 Volumetric Analysis and Inorganic Preparations	22
(4)	UCH 2501 Chemistry of Hydrocarbons	25
(5)	UCH 2502 Chemical Bonding and Main Group Elements	28
(6)	UCH 2503 Organic Qualitative Analysis	32
(7)	UCH 3501 Stereochemistry and Organic Functional Groups-I	34
(8)	UCH 3502 Inorganic Qualitative Analysis	38
(9)	UCH 3503 Thermodynamics	41
(10)	UCH 4501 Electrochemistry	45
(11)	UCH 4502 Physical Chemistry Practicals	48
(12)	UCH 4601 Chemistry of Food and Consumer Products	51
(13)	UCH 4602 Chemistry of Materials	56
(14)	UCH 5501 Organic Functional Groups-II	60
(15)	UCH 5502 Phase Equilibria and Chemical Kinetics	64
(16)	UCH 5503 Spectroscopy	68
(17)	UCH 5504 Transition Elements and Nuclear Chemistry	72
(18)	UCH 5505 Gravimetric Analysis and Organic Preparations	77
(19)	UCH 5601 Biochemistry and Natural Products	79
(20)	UCH 5602 Medicinal and Pharmaceutical Chemistry	83
(21)	UCH 6501 Coordination Chemistry	87
(22)	UCH 6502 Molecular Dynamics	91
(23)	UCH 6503 Synthetic Organic Chemistry and Heterocyclic compounds	95
(24)	UCH 6701 Industrial Chemistry Theory	100
(25)	UCH 6706 Industrial Chemistry Lab - Computer Lab - Seminar	103
x - /	UCH 6705 Internship	
9.	Course Descriptors (Offered to other Departments)	
(1)	UCH 2301 Chemistry for Biology	106
(2)	UCH 2302 Chemistry Practical for Biology	109
(3)	UCH 2303 Chemistry for Physics	111

(4)	UCH 2304 Chemistry Practical for Physics	114
(5)	UCH 3401 Applied Chemistry for Physics	116
(6)	UCH 3402 Applied Chemistry Practical for Physics	119
(7)	UCH 3403 Bio-Chemistry	121
(8)	UCH 3404 Bio-Chemistry Practical	124
(9)	UCH 3801 Chemistry in Everyday Life	126
(10)	UCH 4401 Applied Chemistry for Mathematics	129
(11)	UCH 4402 Applied Chemistry Practical for Mathematics	132
(12)	UCH 4403 Food Chemistry	135
(13)	UCH 4404 Food Chemistry Practical	138
(14)	UCH 4801 Basic Clinical and Pharmaceutical Chemistry	141
10.	CL and CO Based CIA Question Paper Format for UG Theory Courses (MC,	144
	AR, AO, MS, ME, NME and GL)	
11.	Sample CIA Question Paper for a UG Theory Course	145
12.	CL and CO Based End of Semester Examination Question Paper Format for	146
	UG Theory Courses (MC, AR, AO, MS, ME and GL)	
13.	Sample End Semester Examination Question Paper for a UG Theory Course	147
14.	Unit wise distribution of CL and CO Based Questions and Marks for	149
	End of Semester Question Paper Setting for UG Courses (MC, AR, AO, MS,	
15.	MEand GL)	1.40
15.	CL and CO Based Marks Distribution for Direct Assessments of UG Courses (MC, AR, AO, MS, ME and GL)	149
16.	CL and CO Based CIA and End Semester Question Paper Format for	150
101	UG Lab Courses (MC, AR, AO, ME)	100
17.	CL and CO Based CIA Question paper for Lab	151
18.	CL and CO Based End of Semester Examination Question Paper Format for Lab	152
19.	Sample CIA and End Semester Question Paper for Lab Courses	153

VISION AND MISSION OF LOYOLA COLLEGE

VISION

Towards holistic formation of youth, grounded in excellence, through accompaniment to serve the humanity.

MISSION

- To provide inclusive education through an integral and holistic formative pedagogy.
- To promote skills that prepare them for the future.
- To kindle in young minds the spirit of social and environmental justice with a blend of academic excellence and empathy.
- To stimulate critical and conscientious scholarship leading to meaningful and innovative human capital.

CORE VALUES

- Cura Personalis
- Pursuit of Excellence
- Moral Rectitude
- Social Equity
- Fostering solidarity
- Global Vision
- Spiritual Quotient

VISION AND MISSION OF THE DEPARTMENT

VISION

To strive with excellence in teaching and research in Chemistry to empower students with values for the society.

MISSION

To render competent and empathetic educational service to meet global standards in academia/industry through commitment, dedication and continuous learning.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) (School of Physical Sciences)

PEO 1	Professional Skill Development
	To provide professional training and skill development to students in physical
	sciences and related disciplines and nurture them to be employable in science
	career.
PEO 2	Core Competency Development
	To augment their core-competencies and knowledge levels in science, humanities
	and inter-disciplinary areas by imparting education of high standards and
	advanced technological tools.
PEO 3	Innovative Curriculum of Global Relevance
	To upgrade the curriculum periodically based on scientific advancements,
	innovations and societal relevance so as to cater to the shifting global demands.
DEO 4	Environmental Consistivity and Sustainability
PEO 4	Environmental Sensitivity and Sustainability
PEO 4	To infuse environmental sensitivity in students through academic activities and
PEO 4	
PEO 4	To infuse environmental sensitivity in students through academic activities and
PEO 4 PEO 5	To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to
	To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to protect and safeguard the environment for a sustainable future.
	To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to protect and safeguard the environment for a sustainable future. Ethical Principles and Holistic Development
	To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to protect and safeguard the environment for a sustainable future. Ethical Principles and Holistic Development To promote ethical principles and focus on the holistic development of students
PEO 5	To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to protect and safeguard the environment for a sustainable future. Ethical Principles and Holistic Development To promote ethical principles and focus on the holistic development of students to become proficient, skilled, competent and socially responsible persons.
PEO 5	To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to protect and safeguard the environment for a sustainable future. Ethical Principles and Holistic Development To promote ethical principles and focus on the holistic development of students to become proficient, skilled, competent and socially responsible persons. Accessibility and Academic Excellence

PROGRAMME OUTCOMES (POs) (School of Physical Sciences)

PO 1	Disciplinary and Inter-disciplinary Knowledge for Capacity Building
	Students will acquire improved knowledge of the laws governing nature through
	classroom teaching and experimenting in the laboratories. They will develop a
	sense of interdisciplinary approach to identify and resolve issues through
	projects, seminars, field work, internships and industrial visits.
PO 2	Skills for Effective and Efficient Communication
	Students will be able to improve and enhance their communication skills such
	as reading, writing, listening and speaking. This will help them to express their
	scientific ideas clearly and effectively and empower them to become agents of
	social change and hence pave the way for betterment of the society at large.
PO 3	Sense of Inquiry and Problem-solving Skills
	Students will demonstrate the core competencies of their discipline through
	analytical reasoning, problem solving and research related skills, cooperation
	and teamwork, scientific reasoning and thinking which would make them
	emerge as entrepreneurs or administrative personnel.
PO 4	Skills to Impact Society
	Students will develop leadership, team spirit and scientific skills which will help
	them to identify, approach and analyze the problems of the immediate
	neighborhood and society with an eye to look beyond gender, age, caste, creed
	or nationality and work for the emancipation and empowerment of humanity.
PO 5	Energy, Ethics and Environment
	They will be able to involve themselves in designing policies and developing
	scientific temper to harness energy and work on alternate sources. They will be
	aware of the environmental issues and imbibe the spirit of ethical values in
	establishing a self-sustained environment for a healthy society.
PO 6	Self-directed and Lifelong Learning
	Through digital literacy students will engage in self-paced and curious learning
	with no limit on scientific knowledge acquisition and hence develop motivation
	for a sustained lifelong learning capability. Students will accumulate knowledge
	by continuous learning and leverage the past knowledge seamlessly to solve the
	problems in the future.
PO 7	National and International-priorities Preferences and Perspectives
	Students will be able to prioritize national interest in the global perspective with
	an aim to achieve and build a nation and an integrated world through
	contributions that imbibe the spirit of multicultural competency, creative
	thinking, critical analysis, political awareness and the much-needed international
	policies.

PROGRAMME SPECIFIC OUTCOMES (PSOs) (Department of Chemistry)

PSO 1	Recall the fundamental concepts and apply the various scientific principles in industry, environment and society.
PSO 2	Propose solutions for complex scientific problems that meet the specified needs of public health, safety, cultural, societal, and environmental issues.
PSO 3	Transform acquired knowledge to succeed in competitive exams for higher studies / research / administration and self-employment.
PSO 4	Familiarize with the different branches of chemistry like analytical, organic, inorganic, physical, food medicinal, polymer, biochemistry and allied level physics and mathematics.
PSO 5	Rationalize the societal importance of chemistry to develop leadership and entrepreneurship skills.
PSO 6	Synthesize, evaluate, interpret and effectively apply the basic laws, principles, and mechanism involved in the domain of chemistry.
PSO 7	Impart a broad foundation in chemistry and enable them to evaluate and analyze critically the scientific facts.

PART	SEMESTER I	SEMESTER II	SEMESTER III	SEMESTER IV	SEMESTER V		SEMESTER VI	CREDITS
Ι	G. Language (3h/3c)	G. Language (3h/3c)	G. Language (3h/3c)	G. Language (3h/3c)				12
II	General English (6h/3c)	General English (6h/3c)	General English (5h/3c)	General English (5h/3c)				12
	Basic Concepts in Inorganic Chemistry (4h/4c)	Chemistry of Hydrocarbons (4h/4c)	Stereochemistry and Organic Functional Groups-I (4h/4c)	Electrochemistry (3h/3c)	Organic Functional Groups – II (5h/5c)		Coordination Chemistry (6h/6c)	
	Analytical Chemistry (4h/4c)	Chemical bonding and Main group elements (4h/4c)	Inorganic Qualitative Analysis (4h/4c)	Physical Chemistry Practicals (3h/3c)	Phase Equilibria and Chemical Kinetics (5h/5c)		Molecular Dynamics (6h/6c)	
III MC	Volumetric Analysis and Inorganic Preparations (4h/4c)	Organic Qualitative Analysis (4h/4c)	Thermodynamics (4h/4c)		Spectroscopy (5h/5c)		Synthetic Organic Chemistry and Heterocyclic compounds (6h/6c)	
					Transition Elements and Nuclear Chemistry (5h/5c)			84
					Gravimetric Analysis and Organic Preparations (5h/5c)			
		Chemistry for Biology-I (Plant bio) (4h/2c) / Chemistry Practical for Biology (Plant bio) (2h/1c)	Applied Chemistry for Physics (3h/2c) / Applied Chemistry Practical for Physics (2h/1c)	Applied chemistry for Maths (3h/2c) / Applied Chemistry Practical for Maths (2h/1c)		rnship		
AR/ AO		Chemistry for Biology-I (Adv zoo) (4h/2c) / Chemistry Practical for Biology (Adv zoo) (2h/1c)	Bio-Chemistry (Bot & Zoo) (3h/2c) / Bio- Chemistry Practical (Bot & Zoo) (2h/1c)	Food Chemistry (Bot & Adv. Zoo) (3h/2c) / Food Chemistry Practical (Bot & Adv. Zoo) (2h/1c)		Interns		12
		Chemistry for Physics (4h/2c) / Chemistry Practical for Physics (2h/1c)						
				Chem. of Food and Consumer Products (6h/6c)	Biochemistry and Natural Products (6h/6c)			
ME				Chemistry of Materials (6h/6c)	Medicinal and Pharmaceutical Chemistry (6h/6c)			12
MS							Industrial Chemistry + Industrial Chemistry Lab - Computer Lab - Seminar + Internship (12h/15c)	15 (MS&TP)
BT/AT					MOOC/SSP			
/NME			Chemistry in Everyday Life (3h/2c)	Basic Clinical and Pharmaceutical Chemistry (3h/2C)				4
FC	FC (3/1)	FC (3/2), EVS	FC (2/1)	FC 2(1)				5
CCA	CC	CCA (90/1)						1
ORA			OR	OR (120/2)				2
Hr/C	30h/22c	30h/(23+1c)	30h/24c	30h/(24+2c)	30h/30c	30days	30h/33c	180(159)

B.Sc. Chemistry Restructured CBCS Curriculum effective from June, 2019

Note: A Theory paper shall have 3 to 6 contact hours and a practical session shall have 2 to 4 contact hours.

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI DEPARTMENT OF CHEMISTRY (2019 - Restructured Curriculum)

OVERALL COURSE STRUCTURE

Sem	Sub. Code	Course Title	T/L	Categor y	Cr	Hrs
Ι	UTL 1101	General Tamil-I	Т	GL	3	3
	UFR 1101	French for Beginners-I				
	UOL 1101	Hindi Prose-I				
	UOL 1104	General Sanskrit-I				
Ι	UEL 1201	General English-I (Advanced)	Т	GE	3	6
	UEL 1202	General English-I (Intermediate)				
	UEL 1203	General English-I (Basic)				
Ι	UCH 1501	Basic Concepts in Inorganic Chemistry	Т	MC	4	4
Ι	UCH 1502	Analytical Chemistry	Т	MC	4	4
Ι	UCH 1503	Volumetric Analysis and Inorganic Preparations	L	MC	4	4
Ι	UMT 1302	Mathematics for Chemistry	Т	AR	3	6
Ι	UHE 1001	Personality Development		FC	1	3
II	UTL 2101	General Tamil-II	Т	GL	3	3
	UFR 2101	French for Beginners-II				
	UOL 2101	Hindi Prose-II				
	UOL 2103	General Sanskrit-II				
II	UEL 2201	General English-II (Advanced)	Т	GE	3	6
	UEL 2202	General English-II (Intermediate)				
	UEL 2203	General English-II (Basic)				
II	UCH 2501	Chemistry of Hydrocarbons	Т	MC	4	4
II	UCH 2502	Chemical Bonding and Main Group Elements	Т	MC	4	4
II	UCH 2503	Organic Qualitative Analysis	L	MC	4	4
II	UPH 2301	Physics for Chemistry	Т	AR	2	4
II	UPH 2302	Physics for Chemistry Practical	L	AR	1	2
II	UHE 2001	Life Issues and Coping Strategies	Т	FC	2	3
III	UTL 3101	General Tamil-III	Т	GL	3	3
	UFR 3101	French for Beginners - III				
	UOL 3101	Hindi Poetry -III				
	UOL 3102	General Sanskrit-III				
III	UEL 3201	General English- III (Advanced)	Т	GE	3	5
	UEL 3202	General English- III (Intermediate)				
	UEL 3203	General English- III (Basic)				
III	UCH 3501	Stereochemistry and Organic Functional Groups-I	Т	MC	4	4
III	UCH 3502	Inorganic Qualitative Analysis	L	MC	4	4
III	UCH 3503	Thermodynamics	Т	MC	4	4
III	UMT 3401 /	Mathematics for Chemistry – II /	Т	AO	3/	5 /
	UPB 3401	Applied Microbiology	-		2	3
III	UCS 3401 /	Data Analytics using Excel /	L	AO	3 /	5 /
	UPB 3402	Applied Microbiology Practicals - I		_	1	2

III	UHE 3001	Social Awareness	L	FC	1	2
III				NME	2	3
III				ORA		
IV	UTL 4102	General Tamil-IV	Т	GL	3	3
	UFR 4101	French for Beginners - IV				
	UOL 4101	Hindi Poetry -IV				
	UOL 4102	General Sanskrit-IV				
IV	UEL 4201	Introduction to Technical Translation	Т	MC	3	5
	UEL 4202	Soft skills for Professional Development				
	UEL 4203	Professional Content Writing				
	UEL 4204	English for Technical Writing				
	UEL 4205	English for Employability Skills				
	UEL 4206	Essential skills for group Communication				
	UEL 4207	Theatre Performance and Film Review				
IV	UCH 4501	Electrochemistry	Т	MC	3	3
IV	UCH 4502	Physical Chemistry Practicals	L	MC	3	3
IV	UCH 4601	Chem. of Food and Consumer Products	Т	ME	2	3
IV	UCH 4602	Chemistry of Materials	L	ME	2	3
IV	UAZ 4401 /	Animal Biotechnology and Bioinformatics /	Т	AO	2	3
	UPH 4401	Applied Physics				
IV	UCA 4402 /	Web Development /	L	AO	3 /	5 /
	UAZ 4402 /	Animal Biotechnology and Bioinformatics Lab /			1	2
	UPH 4402	Applied Physics Lab				
IV	UHE 4001	Environmental Studies	Т	FC	1	2
IV				NME	2	3
IV				ORA		
V	UCH 5501	Organic Functional Groups – II	Т	MC	5	5
V	UCH 5502	Phase Equilibria and Chemical Kinetics	Т	MC	5	5
V	UCH 5503	Spectroscopy	Т	MC	5	5
V	UCH 5504	Transition Elements and Nuclear Chemistry	Т	MC	5	5
V	UCH 5505	Gravimetric Analysis and Organic Preparations	L	MC	4	4
V	UCH 5601	Biochemistry and Natural Products	Т	ME	6	6
V	UCH 5602	Medicinal and Pharmaceutical Chemistry	Т	ME	6	6
VI	UCH 6501	Coordination Chemistry	Т	MC	6	6
VI	UCH 6502	Molecular Dynamics	Т	MC	6	6
VI	UCH 6503	Synthetic Organic Chemistry and Heterocyclic compounds	Т	MC	6	6
VI	UCH 6701	Industrial Chemistry Theory	Т	MS	5	6
VI	UCH 6706	Industrial Chemistry Lab-Computer Lab-Seminar /	L	MC	5 /	6 /
	UCH 6705	Internship	Ι	MS	5	

COURSES OFFERED TO OTHER DEPARTMENTS

-						
II	UCH 2301	Chemistry for Biology-I (Bot)	Т	AR	2	4
II	UCH 2302	Chemistry Practical for Biology (Bot)	L	AR	1	2
II	UCH 2301	Chemistry for Biology (Zoo)	Т	AR	2	4
II	UCH 2302	Chemistry Practical for Biology (Zoo)	L	AR	1	2
II	UCH 2303	Chemistry for Physics	Т	AR	2	4
II	UCH 2304	Chemistry Practical for Physics	L	AR	1	2
III	UCH 3401	Applied Chemistry for Physics	Т	AO	2	33
III	UCH 3402	Applied Chemistry Practical for Physics	L	AO	1	2
III	UCH 3403	Bio-Chemistry (Bot & Zoo)	Т	AO	2	3
III	UCH 3404	Biochemistry Practical (Bot & Zoo)	L	AO	1	2
III	UCH 3801	Chemistry in Everyday Life	Т	NME	2	3
IV	UCH 4401	Applied chemistry for Mathematics	Т	AO	2	3
IV	UCH 4402	Applied Chemistry Practical for Mathematics	L	AO	1	2
IV	UCH 4403	Food Chemistry (Bot & Adv. Zoo)	Т	AO	2	3
IV	UCH 4404	Food Chemistry Practical (Bot & Adv. Zoo)	L	AO	1	2
IV	UCH 4801	Basic Clinical & Pharmaceutical Chemistry	Т	NME	2	3

COURSE DESCRIPTORS

Course Code	UCH 1501		
Course Title	BASIC CONCEPTS IN INORGANIC CHEMISTRY		
Credits	04		
Hours/Week	04		
Category	Major Core (MC) – Theory		
Semester	Ι		
Regulation	2019		
Course Overvie	W		
	ncepts in Inorganic Chemistry comprises different modules of periodic properties, types of chemical reactions, solvent systems, theories of bonding and chemistry of .		
	of the course is to give basic knowledge about the atomic structure, periodicity, in covalent compounds and metals, concepts of acid-base and chemistry of .		
3. The othe models,	r important aspects that will be discussed in the course include: structure of atom electronegativity scales, aqueous and non-aqueous solvents of homo- and hetero molecules and pseudohalogens.		
diagram,	ourse, the effect of bonding and non-bonding electrons on the molecule, MO the different bonding models, structure of molecules, semi- and superconductors be examined.		
5. The mo	dule deals with various theories of bonding for predicting the structure of gen compounds.		
Course Object	ives		
	stand the basic concepts of periodic properties and nature of elements.		
	5 51		
	of chemical reactions.		
	ss the structure and geometry of covalent molecules.		
	the MO diagrams and predict bond order and magnetic properties.		
-	in the nature of bonding and chemistry of halogens.		
Prerequisites	Basic knowledge of chemistry		

SYLLABUS

	STELADOS						
UNIT	CONTENT	HOURS	COs	COGNITIVE			
				LEVEL			
I	 Electronic configuration, dual nature of electrons, Heisenberg uncertainty principle, Bohr theory, Schrodinger equation, 	10	CO 1 CO 2 CO 3	K1, K2, K3, K4, K5, K6			
	significance of wave functions, normalization of wave function, radial and angular wave functions, Pauli's exclusion principle, Hund's rule, and Aufbau principle. Isoelectronic molecules.		CO 4 CO 5				
	1.2 Periodic table: periodic law and arrangement of elements, group number.						

I	1.2 Demodicitry stamic ionic and and and all			
	1.3 Periodicity: atomic, ionic and covalent radii; trend in ionic radii, ionization energy,			
	electron affinity; electronegativity, scales-			
	Pauling, Mulliken-Jaffe, Allred-Rochow and			
	calculations. Diagonal relationships in the			
	periodic table. Inert-pair effect.			
II	2.1 Oxidation Number and State: calculation of	12	CO 1	K1, K2, K3,
	oxidation number of elements. Oxidation,		CO 2	K4, K5, K6
	reduction, redox and half reactions. Oxidizing		CO 3	
	and reducing agents. Equivalent weight of		CO 4	
	oxidizing and reducing agents-calculations.		CO 5	
	2.2 Types of chemical reactions:			
	disproportionation (self-oxidation-reduction),			
	electron transfer and double decomposition. Balancing chemical reactions by oxidation			
	number and ion-electron methods. Direct and			
	indirect (electrochemical cell) redox reactions			
	and importance.			
	2.3 Theories of acids and bases: Arrhenius,			
	Bronsted-Lowry, Lewis, solvent system, Lux-			
	Flood and Usanovich. HSAB concept.			
	2.4 Non-aqueous solvents: Classification-protic			
	and aprotic. Liquid ammonia as a solvent.			
	Acid-base, precipitation and complex			
	formation reactions. Solutions of alkali and			
	alkaline earth metals in ammonia-application.			
III	3.1 Lewis theory-octet rule and exception,	10	CO 1	K1, K2, K3,
	electron dot structural formula. Sidgwick- Powell theory-prediction of molecular		CO 2 CO 3	K4, K5, K6
	shapes; Valance Bond Theory (VBT).		CO 3 CO 4	
	Comparison of VBT and MOT. Slater's rule.		CO 5	
	σ - and π -bond. Hybridization and geometry of			
	molecules-BeX ₂ , SnCl ₂ , PbCl ₂ , NH ₃ , PCl ₃ ,			
	CH_4 , PCl_5 , and SF_6 .			
	3.2 VSEPR model: effect of bonding and			
	nonbonding electrons on the structure, effect			
	of electronegativity. Illustration of structure			
	of molecules containing σ -bonds and π -bonds			
	(NH ₃ , SF ₄ , ICl ₄ ⁻ , ICl ₂ ⁻ , XeF ₄ , XeF ₆ , XeO ₃ and CO_3^{2-}).			
IV		10	CO 1	V1 V2 V2
1.4	4.1 MO theory: LCAO method-criteria of orbital overlap, types of molecular orbitals- σ -, π - and	10	CO 1 CO 2	K1, K2, K3, K4, K5, K6
	δ -MOs; formation of σ - and π -MOs and their		CO 2 CO 3	мт, 1XJ, IXU
	schematic illustration; qualitative MO energy		CO 4	
	level diagram of homo- $(H_2 \text{ to } X_2)$ and		CO 5	
	heterodiatomic molecules (HCl, NO, CO),			
	magnetic properties, bond order and stability			

	of molecules and ima			
	of molecules and ions.			
	4.2 Metallic bond: metallic properties, band theory			
	of metals. Semiconductors: n- and p-type.			
	Superconductors.			
V	5.1 Group-17: anomalous behaviour of fluorine,	10	CO 1	K1, K2, K3,
	ionic-, covalent- and bridging halides;		CO 2	K4, K5. K6
	reactivity of halogens, reduction by		CO 3	
	thiosulfate and application to iodo- and		CO 4	
	iodimetry.		CO 5	
	5.2 Halogen oxides: oxygen difluoride, dioxygen			
	difluoride, dichlorine monoxide, chlorine			
	dioxide, bromine dioxide, iodine pentoxides-			
	preparation, properties and structure.			
	Bleaching powder-estimation of available			
	chlorine.			
	5.3 Oxoacids: hypohalous, halous, halic and			
	perhalic acid-oxidation state, strength and			
	hybridization.			
	5.4 Interhalogen compounds: CIF, CIF ₃ , BrF ₅ and			
	IF ₇ -preparation, properties and structure.			
	5.5 Pseudohalogens: cyanide, thiocyanate, and			
	azide-structure and properties.			
Text B				
1.	1. Principles of Inorganic Chemistry, B. R. Puri, L. R. Sharma and K. C. Kalia, Shoban Lal			alia, Shoban Lal
	Nagin Chand and Co., New Delhi, 2018.			
2.	Advanced Inorganic Chemistry, Vol. I, Satyaprakash,	, G. D. Tuli,	S. K. Ba	su, R. D. Madan,
	S. Chand & company, New Delhi, 2017, 5th edn.			~
3.				
4.	Inorganic Chemistry, C. Housecroft and A. G. Sharpe	e, Pearson, 2	012, 4th	edn.
	ted Readings	D • <i>C</i>		
1.	Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinso	on, P. L. Gu	as, John	W1ley, 2002, 3rd
	edn.		D · 1 I	A1 1 X 1
2.	Concepts and Models of Inorganic Chemistry, B. Dou	gias, D. Mc	Daniel, J.	Alexander, John
2	Wiley, 1994, 3rd edn.	I V. Stand	I	11 N X 1-
3.	Inorganic Chemistry, J. E. Huheey, E. A. Kieter and R	. L. Keiter, I	arper Co	omns, new York,
Α	2006, 4th edn.			
4.				
5.	Inorganic Chemistry: A Modern Introduction, T. Moe	ener, wiley,	INEW YO	гк, 1990.
	esources			
	https://bit.ly/3vB6v0N			
2.	https://bit.ly/3juWayu			
L				

COs	CO Description	Cognitive Level
CO 1	To understand and recall the atomic model, bonding theories and periodic table of elements, HSAB principle.	K1, K2
CO 2	To integrate and assess the electrons arrangement and bonding characteristics to infer the structure of compounds.	К3
CO 3	To analyse and differentiate compounds based on structure, composition and bonding interactions.	K4
CO 4	To explain the role of electron pairs arrangement in orbitals and properties of compounds through bonding theories.	K5
CO 5	To construct and simulate the molecular orbital diagrams to explain the bonding interactions, magnetic behaviour and geometry.	К6

~ ~ .			
Course Code	UCH 1502		
Course Title	ANALYTICAL CHEMISTRY		
Credits	04		
Hours/Week	04		
Category	Major Core (MC) – Theory		
Semester	Ι		
Regulation	2019		
Course Overview			
	chemistry involves the separation, identification and quantification of the opponents of natural and artificial materials.		
	the course is to give the basic knowledge in handling of chemicals, gravimetric, thermal, data analysis, separation and purification techniques.		
3. This course			
4. It also offers theoretical aspects of different types of titrations including acid –base, re			
precipitation and complexometric titrations.			
 It also deals with the principles and applications of different chromatographic, distillation and thermal techniques. 			
Course Objectives			
	and the safe methods of handling toxic chemicals and analyze the different types analytical measurements.		
	and apply the theories of acid-base, redox and complexometric titrations in		
volumetric analysis.			
3. To recognize the basis of quantitative analysis such as gravimetric and precipitatio			
titrations.			
4. To apply the chromatographic techniques to separate and identify the component			
a mixture.			
5. To classify and infer thermo analytical techniques and to assess the thermal stability chemical compound.			
Prerequisites	Basic knowledge of Chemistry		

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Handling of Chemicals and Data Analysis: 1.1 Safety and hygiene in the Chemistry Lab - Storage and handling of chemicals, handling of acids, ethers, toxic and poisonous chemicals. Antidotes, threshold vapour concentration and first aid procedure. Material safety data sheet	12	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
	(MSDS), Control of substances hazardous to health (COSHH).			

SYLLABUS

	1.2 Calibration of volumetric apparatus:			
	burette, pipette and standard flask.			
	1.3 Errors in chemical analysis - Accuracy and			
	precision, Types of errors – Determinate			
	and indeterminate errors. Methods of			
	eliminating or minimizing errors.			
	Precision: mean, median, average			
	deviation and coefficient of variation.			
	Significant figure and its relevance.			
	Normal error curve and its importance.			
II	Titrimetric Methods of Analysis	13	CO 1	K1, K2, K3,
	2.1 Methods of expressing concentration of	-	CO 2	K4, K5, K6
	solutions – Molarity, molality, formality,		CO 3	, ,
	normality, mole fraction, ppm and ppb.		CO 4	
	Law of volumetric analysis. Types of		CO 5	
	titrations. Requirements for titrimetric			
	analysis. Primary and secondary			
	standards. Limitation of volumetric			
	analysis.			
	2.2 Acid-base Equilibria - pH of strong and			
	weak acid solutions. Buffer solutions.			
	Henderson equation. Preparation of acidic			
	and basic buffers. Relative strength of			
	acids and bases from K_a and K_b values.			
	Neutralization-titration curve, theory and			
	choice of indicators.			
	2.3 Complexometric titrations - Stability of			
	complexes. Titration involving EDTA.			
	Usage of metal ion indicators.			
III	Solubility Equilibria	11	CO 1	K1, K2, K3,
	3.1 Precipitation titrations - Concept of		CO 2	K4, K5, K6
	solubility product. Relation between		CO 3	
	solubility and solubility product.		CO 4	
	Argentometric titrations, indicators for		CO 5	
	precipitation titrations involving silver			
	nitrate. Determination of chloride by			
	Volhard's method. Theory of adsorption			
	indicators.			
	3.2 Gravimetric methods of analysis -			
	Separation by precipitation. Factors			
	affecting solubility, gravimetric factor.			
	Purity of precipitates, Von Weimarn ratio.			
	Co-precipitation and post precipitation.			
	Precipitation from homogeneous solution.			

IV	Separation and Purification Techniques	11	CO 1	K1, K2, K3, K4,
	4.1 Chromatographic techniques and		CO 2	K5, K6
	applications - Principles of adsorption and		CO 3	110,110
	partition chromatography: Paper, Thin		CO 4	
	layer, Column chromatography and ion-		CO 5	
	exchange chromatography.		005	
	1 1			
	Purification of solid organic compounds:			
	re-crystallization, sublimation. Use of			
	miscible solvents. Use of drying agents			
	and their properties. Purification of			
	liquids. Techniques of distillation.			
	Chemical methods of purification and test			
	of purity.			
V	Thermal Analysis	5	CO 1	K1, K2, K3, K4,
	5.1 Thermogravimetric analysis (TGA) and		CO 2	K5, K6
	differential thermal analysis (DTA):		CO 3	
	Principle, instrumentation and		CO 4	
	applications.		CO 5	
	5.2 Factors affecting TGA and DTA curves.			
	DTG and TG-DTA curve of AgNO ₃ ,			
	CaC ₂ O ₄ .H ₂ O, CuSO ₄ . 5H ₂ O.			
Text B	ooks		•	
1.	U. N. Dash, Analytical Chemistry: Theory and Pr	actice, Sultan	Chand an	d sons Educational
	Publishers, New Delhi, 2011.			
2.	R. Gopalan, P. S. Subramanian and K. Rengarajan, Elements of Analytical Chemistry,			
	Sultan Chand, New Delhi, 2007.	C .		
3.	S. Usharani, Analytical Chemistry, MacMillan Pu	ublisher, 2000		
4.	B. Sivasankar, Instrumental Methods of Analysis			ess,2012.
5.	Shoba Ramakrishnan, Analytical Chemistry, Pear	son Education	n, 2017.	
6.	K.S. Vishwanathan, R. Gopalan, Analytical			on, Identification,
	Quantification, University press,2018		1	, , ,
Sugges	ted Readings			
	D. A. Skoog, D. M. West and F. J. Holler, Analy	tical Chemist	rv: An Int	roduction. 5thedn
	Saunders college publishing, Philadelphia, 1998.			, ,
2.	R.A. Day and A.L. Underwood, Quantitative A	Analysis, 6the	edn., Prer	ntice Hall of India
	Private Ltd., New Delhi, 1993.			
3.	H. Kaur, Instrumental Methods of Chemical Anal	lysis Pragati l	Prakashan	Meerut 2010
4.	V.K. Srivastava, K.K. Srivastava, Introduction t	• •		
т.	S. Chand and Company, New Delhi, 1987.		. apiiy. 11	icory and radice,
5.	A.K. Srivastava, P.C. Jain, Chemical Analysis: A	n Instrument	al Annroa	ich for B Sc. Hone
5.	and M.Sc. Classes, S. Chand and Company Ltd.,			
6	· · ·	0		
6.	M. Dekker, Inorganic titrimetric analysis: conte	mporary meu	ious, Cla	Tence Joseph Hull,
7	1971. B. Snever, Thermel Analysis of Materials, CBC I	maga 1002		
7.	R. Speyer, Thermal Analysis of Materials, CRC Press, 1993.			
8.				ook of Quantitative
	Chemical Analysis, sixth edition Pearson Education	on, 2000.		

Web Resources

- 1. <u>https://bit.ly/3pz9NR1</u>
- 2. <u>https://bit.ly/3vCz4uA</u>
- 3. <u>https://bit.ly/3lBgbos</u>
- 4. <u>https://bit.ly/3lENibe</u>

COs	CO Description	Cognitive Level
CO 1	To understand the safety in handling of chemicals, principles of volumetric, gravimetric, thermal analysis and describe the separation techniques.	K1, K2
CO 2	To apply different chromatographic techniques in identifying the components and classify thermo analytical techniques and solve problems related to pH, solubility product, standard deviation.	К3
CO 3	To analyse the types of error, thermal behaviour of materials using TGA, DTA and examine the significance of complexometric, precipitation titrations and distillation techniques.	K4
CO 4	To compare different precipitation processes, separation techniques and determine the concentration of solutions, thermal stability of a chemical compound and evaluate analytical data.	К5
CO 5	To develop analytical skills in volumetric, gravimetric, thermal analysis, chromatographic techniques for its applications in industries and research.	K6

Course Code	UCH 1503
Course Title	VOLUMETRIC ANALYSIS AND INORGANIC PREPARATIONS
Credits	04
Hours/Week	04
Category	Major Core (MC) – Practical
Semester	Ι
Regulation	2019

Course Overview

- 1. Volumetric analysis and inorganic preparations comprise of two different modules: (i) Quantitative estimations by volumetric titrations. (ii) Preparations of inorganic compounds.
- 2. Basic knowledge needed for preparing standard solutions in different concentration units such as molarity, normality and equivalent weight will be discussed.
- 3. Analytical skill of the students will be enhanced by doing experiments individually.
- 4. Suitable trainings will be offered for the computation of needed parameters from the experimental data.
- 5. Students will perform the preparation of inorganic compounds and learn crystallization techniques.

Course Objectives

- 1. To understand the calibration of apparatus.
- 2. To learn the preparation of standard solutions.
- 3. To analyze the end point and estimate the unknown solution in acid-base, redox and complexometric titrations.
- 4. To acquire the knowledge about the preparation of inorganic compounds in the laboratory.
- 5. To explain the theories of chemical reactions involved in the titrations and preparations of inorganic compounds.

Prerequisites	Basic knowledge of Chemistry.
---------------	-------------------------------

UNIT COGNITIVE CONTENT HOURS COs LEVEL Ι CO 1 **A. Volumetric Estimations** 46 K1, K2, K3, 1. Calibration of volumetric apparatus: K4, K5, K6 CO 2 Burette, pipette and standard flasks. CO 3 2. Estimation of HCl. CO 4 3. Estimation of oxalic acid. CO 5 4. Estimation of Ferrous ammonium sulphate (permanganometry). 5. Estimation of calcium (permanganometry). 6. Estimation of KMnO₄ (iodometry). 7. Estimation of copper (iodometry). 8. Estimation of Fe^{2+} - Fe^{3+} mixture using diphenyl amine (dichrometry). 9. Estimation of calcium. 10. Estimation of magnesium. Π **B.** Inorganic Preparations 06 CO 1 K1, K2, K3, 1. Cuprous chloride K4, K5, K6 CO 2 2. Potash alum CO 3 3. Ferrous sulfate CO 4 4. Ferrous ammonium sulphate CO 5 5. Microcosmic salt 6. Reinecke's salt

SYLLABUS

Textbooks

- 1. Venkateswaran V, Veeraswamy R., Kulandaivelu A.R., Basic Principles of Practical Chemistry, New Delhi, Second edition, Sultan Chand & Sons, (1997).
- 2. Bassett, J., et al., Vogel's Textbook of Quantitative Inorganic Analysis, (4th edition), ELBS Longman, (1985).
- 3. Kamboj, P. C. Advanced University Practical Chemistry Vol-I January (2013).

Web Resources

1. https://bit.ly/3C9SZDK

Course Outcomes (COs) and Cognitive Level Mapping

COs	CO Description	Cognitive Level
CO 1	To understand the calibration of apparatus.	K1, K2
CO 2	To prepare and utilize the standard solutions.	К3
CO 3	To determine the end point of the acid-base, redox and complexometric titrations.	K4
CO 4	To predict the suitable methods used to prepare the inorganic compounds in the laboratory.	К5
CO 5	To integrate the basic knowledge in volumetric analysis and inorganic preparations.	К6

Course Code	UCH 2501			
Course Title CHEMISTRY OF HYDROCARBONS				
Credits	04			
Hours/Week	04			
Category	Major Core (MC) - Theory			
Semester	П			
Regulation	2019			
Course Overview				
1. Chemistry	of hydrocarbons becomes the basis of organic chemistry.			
2. The course	e gives a detailed discussion on the occurrence and synthesis of hydrocarbons.			
3. The importance of this course is to explain the nomenclature, classification, bonding and				
structure of organic compounds.				
4. The physical and chemical properties of aliphatic and aromatic hydrocarbons have been				
discussed in detail.				
5. The other important aspects include the preparation of various functional organic compounds				
from hydrocarbons.				
Course Objectives				
1. To understand the basic concepts of organic chemistry and the chemistry of hydrocarbons.				
2. To understand the electronic effects, preparation and the properties of aliphatic hydrocarbons.				
3. To learn the mechanism of preparation and chemical properties of hydrocarbons.				
4. To correlate the difference in properties of aliphatic and aromatic hydrocarbons.				
5. To design various synthetic strategies for the preparation of hydrocarbons and various othe				
organic com	apounds.			
Prerequisites	Basic knowledge of Chemistry.			

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Electronic Effects of Organic Compounds	10	CO 1	K1, K2, K3,
	1.1 Cleavage of bonds: Homolytic and		CO 2	K4, K5, K6
	heterolytic cleavages, bond energy, bond		CO 3	
	length and bond angle.		CO 4	
	Electron displacement effects: Inductive,		CO 5	
	inductomeric, electromeric, mesomeric,			
	resonance, hyperconjugation and steric			
	effects. Tautomerism: Keto-enol, amido-			
	imidol and nitro-acinitro forms			
	1.2 Formation and stability of reaction			
	intermediates: carbocation, carbanion, free			
	radicals, carbene and benzyne.			

II	Alkanes and Cycloalkanes	12	CO 1	K1, K2, K3,
	2.1 Alkanes: Nomenclature, Classification,		CO 2	K4, K5, K6
	Preparation by Industrial method, Wurtz		CO 3	
	reaction, reduction or hydrogenation of		CO 4	
	alkenes and Corey-House method.		CO 5	
	Reactions: Mechanism of halogenation,			
	free radical substitution, sulphonation,			
	nitration, oxidation.			
	2.2 Cycloalkanes: Preparation using Wurtz			
	reaction, Dieckmann's ring closure and			
	reduction of aromatic hydrocarbons.			
	Reactions: Mechanism of substitution and			
	ring-opening reactions. Baeyer's strain			
	theory and theory of strain less rings.			
III	Alkenes	12	CO 1	K1, K2, K3,
111	3.1 Alkenes: Nomenclature, Classification,	12	CO 1 CO 2	K1, K2, K3, K4, K5, K6
	General methods of preparation by		CO 2	114, 113, 110
	dehydrogenation, dehydrohalogenation,		CO 4	
	dehydration, Hoffmann and Saytzeff rules,		CO 5	
	cis and trans eliminations. Reactions:		005	
	Mechanism of electrophilic and free radical			
	addition, addition of hydrogen, halogen,			
	hydrogen halide (Markownikoff's rule),			
	hydrogen bromide (peroxide effect),			
	sulphuric acid, water, hydroboration,			
	ozonolysis, dihydroxylation with KMnO ₄ .			
	3.2 Dienes: Stability of alkenes and dienes			
	(conjugated, isolated and cumulative			
	dienes). General methods of preparation,			
	mechanism of dehydrohalogenation of			
	dienes. Reactions: Mechanism of 1,2- and			
	1,4-additions, Diels-Alder reactions.			
IV	Alkynes	6	CO 1	K1, K2, K3,
	4.1 Nomenclature, types of alkynes,		CO 2	K4, K5, K6
	preparation by dehydrohalogenation and		CO 3	
	dehydrogenation.		CO 4	
	4.2 Reactions: acidity of alkynes, formation of		CO 5	
	acetylides, addition of water, hydrogen			
	halides and halogens, oxidation, ozonolysis			
	and hydroboration/oxidation.			
V	Aromatic Hydrocarbons	12	CO 1	K1, K2, K3,
	5.1 Nomenclature, Aromaticity,		CO 2	K4, K5, K6
	antiaromaticity and non-aromaticity.		CO 3	
	Benzene: extraction, industrial and		CO 4	
	laboratory preparations, purification.		CO 5	
	Properties: Electrophilic substitution			
	laboratory preparations, purification. Properties: Electrophilic substitution			

	halogenation, Friedel Crafts alkylation and				
	acylation with mechanisms. Orientation				
	and reactivity of disubstitution reactions:				
	nitration and halogenations.				
	5.2 Polynuclear aromatic hydrocarbons:				
	Preparation and properties of naphthalene,				
	anthracene and phenanthrene.				
Text Bo	Doks				
1.	B. Y. Paula, Organic Chemistry, 7 th edn., Pearson Education, Inc. (Singapore), New Delhi,				
	reprint, 2014.				
2.	T. W. Graham Solomons, Organic Chemistry, Global edn., John Wiley and sons, 2017.				
3.	R. T. Morrison and R. N. Boyd, Organic Chemistry, 7th edn., Printice-Hall of India Limited,				
	New Delhi, 2010.				
4.	Arun Bahl and B. S. Bahl, Organic Chemistry 22 nd edn, S. Chand and sons, New Delhi,				
	2016.				
5.	V.K. Ahluwalia and Madhuri Goyal, A Text book of Organic Chemistry, Narosa Publishing				
	House, New Delhi, 2001.				
6.					
	Delhi, 2017.				
Sugges	ted Readings				
1.	J. March and M. Smith, Advanced Organic Chemistry, 6 th edn., John-Wiley and sons, 2007.				
2.	S. H. Pine, Organic Chemistry, 5 th edn., McGraw Hill International Edition, Chemistry				
	Series, New York, 1987.				
3.	S. N. Ege, Organic Chemistry, Structure and Reactivity, 3 rd edn., A.I.T.B.S., New Delhi,				
	1998.				
4.	D. J. Cram,G. S. Hammond, Organic Chemistry, 3 rd edn., McGraw-Hill, Kogakusha,				
	Limited, 1970.				
5.	F. A. Carey, Organic Chemistry, 3 rd edn., Tata-McGraw Hill Publications, New Delhi, 1999.				
6.	I.L. Finar, Organic Chemistry, Vol-1, 6th edn., Pearson Education Asia. 2004				
Web R	esources				
1. <u>ht</u>	tps://bit.ly/3Gb99iy				
2. <u>ht</u>	tps://www.organic-chemistry.org/				
	tps://bit.ly/3GduvMi				
4. <u>ht</u>	tps://bit.ly/30TXm8d				

COs	CO Description	Cognitive Level
CO 1	To recall the method of naming organic compounds.	K1, K2
CO 2	To understand the chemistry of aliphatic and aromatic hydrocarbons with their preparation and properties.	К3
CO 3	To predict the reaction mechanism for the synthesis and reactions of alkanes, alkenes, alkynes and aromatic hydrocarbons.	K4
CO 4	To apply the theory of hydrocarbons for their analysis.	K5
CO 5	To design and synthesize new compounds by correlating the properties of hydrocarbons.	K6

Course Code	UCH 2502			
Course Title	CHEMICAL BONDING AND MAIN GROUP ELEMENTS			
Credits	04			
Hours/Week	04			
Category	Major Core (MC) - Theory			
Semester	П			
Regulation	2019			
Course Overview				
	Bonding and Main Group Elements comprises bonding in ionic compounds and			
•	of <i>s</i> - and <i>p</i> -block elements.			
	of the course is to give detailed information about the ionic bond, packing of			
	lecules in solids, non-covalent interactions, and chemistry of main group elements.			
3. The different modules of the course will examine the extent of ionic bonding in crystal				
prediction of compounds as more ionic or covalent, atoms/molecules packing models and				
characteristics of s- and p-block elements and their compounds.				
4. In this course, the vivid group analysis of boron, carbon and nitrogen will also be examined.				
	1 1 2			
covalency in ionic compounds, radius ratio, inclusion compounds, crown ethers and oxides and oxoacids of phosphorous.				
	* *			
Course Objective				
	stand and explain the concepts of ionic, covalent and non-covalent bonding			
interaction				
<u>^</u>	1 1 1			
4. To analyze the energy associated with the bonding interactions and their strength.				
5. To explain the nature of bonding and chemistry of main group compounds.				
Prerequisites	Basic knowledge of chemistry and the elements of periodic table.			

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Ionic Bond	11	CO 1	K1, K2, K3,
	1.1. Introduction and properties of ionic		CO 2	K4, K5, K6
	compounds, factors influencing the formation		CO 3	
	of ionic compounds-ionization energy,		CO 4	
	electron affinity, and electronegativity.		CO 5	
	1.2. Lattice energy (U_o) : Born-Landé equation			
	(derivation not required). Factors affecting			
	lattice energy. Born-Haber cycle-enthalpy of			
	formation $(\Box H_f)$. Stability and solubility of			
	ionic compounds. Hydration and lattice energy. Enthalpy of solvation and solution.			

	1.2. Covalance in ionic commounds: Ecion's miles			
	1.3. Covalency in ionic compounds: Fajan's rules;			
	effects of polarization-solubility, melting			
	point, and thermal stability of ionic			
	compounds.			
II	Structure of Solids	11	CO 1	K1, K2, K3,
	2.1. Classification of solids: amorphous and		CO 2	K4, K5, K6
	crystalline. Elements of crystal symmetry,		CO 3	
	lattice points and crystal lattice. Unit cell,		CO 4	
	simple, primitive, body- (bcc) and face		CO 5	
	centered (fcc) cubic systems.			
	2.2. Seven crystal systems and 14-Bravais lattices.			
	2.3. Weiss and Miller indices-drawing various			
	planes in a cubic lattice.			
	2.4. Structure of ionic solids: packing of ions in			
	solids-hexagonal- and cubic closed packings,			
	radius ratio, coordination number. Crystal			
	•			
	wurtzite and cesium chloride, TiO_2 and CaF_2			
	(unit cell diagrams); identification of simple			
	cubic, bcc, fcc lattices.			
	2.5. Crystal defects: Stoichiometric and non-			
	stoichiometric, F-center.		~ ~	
III	Non-Covalent Interactions	10	CO 1	K1, K2, K3,
	3.1. Hydrogen bond: intra- and intermolecular;		CO 2	K4, K5, K6
	influence on the physical properties of		CO 3	
	molecules; comparison of bond strength and		CO 4	
	properties of hydrogen bonded nitrogen,		CO 5	
	oxygen, and fluorine compounds; structure of			
	ice and water. Variation of boiling point of			
	hydrides of group-15, 16 and 17.			
	3.2. van der Waals forces, ion dipole-dipole			
	interactions, London forces.			
	3.3. Crystalline hydrates and clathrates-			
	preparation, properties, structure and uses.			
IV	Chemistry of s-block Elements	10	CO 1	K1, K2, K3,
	4.1. Chemical properties of s-block metals:		CO 2	K4, K5, K6
	reaction with water, air, and nitrogen; uses of		CO 3	
	s-block metals and their compounds,		CO 4	
	anomalous behaviour of Li and Be.		CO 5	
	4.2. Compounds of s-block metals: oxides,			
	hydroxides, peroxides and superoxides-			
	preparation and properties; Na ₂ CO ₃ , NaHCO ₃ .			
	Extraction of beryllium.			
	4.3 Complexes of <i>s</i> -block metals: complexes with			
	crown ethers, biological importance of sodium			
	and potassium.			
L				

V	Chamistry of a block Floments	10	CO 1	V1 V2 V2
v	Chemistry of p-block Elements	10	CO 1	K1, K2, K3,
	5.1. Boron group: extraction of boron; hydrides-		CO 2	K4, K5, K6
	classification of boranes and carboranes.		CO 3	
	Diborane- preparation, properties and		CO 4	
	structure elucidation, types of compounds-		CO 5	
	borates, and borax. Borazine-preparation and			
	structure.			
	5.2. Carbon group: catenation and			
	heterocatenation, carbides-salt-like carbides,			
	interstitial carbides, covalent carbides.			
	Silicates-classification, three dimensional			
	silicates-properties and structures.			
	5.3. Nitrogen group: group discussion, hydrides of			
	elements-hydrazine, hydroxylamine. Structure			
	of oxides of nitrogen (NO, N ₂ O, NO ₂ , N ₂ O ₄			
	and N ₂ O ₅). Structure of oxyacids of nitrogen-			
	HNO ₂ , HNO ₃ , H ₂ N ₂ O ₂ , HN ₃ . Nitrides-			
	classification, preparation properties and uses.			
	Preparation, properties, uses and structure of			
	nitrosyl chloride and sodium nitroprusside.			
	5.4. Oxides and oxoacids of phosphorus: structure			
	and oxidation state of phosphorous in			
	phosphorous acids and phosphoric acids. Salts			
	of phosphorus acids-distinction among ortho-,			
	meta- and pyrophosphate. Permonophosphoric			
	acid, Triphosphazenes.			
Text B				
1.		Sharma and	КСК	alia Shoban Lal
1.	Nagin Chand and Co., New Delhi, 2018.	onurnia and	II. C. II.	ina, Shooun Lui
2.		G D Tuli	SKBa	su R D Madan
۷.	S. Chand & company, New Delhi, 2017, 5th edn.	i, O. D. 1 ull,	5. IX. Da	, i iniauail,
3.	Concise Inorganic Chemistry, J. D. Lee, Blackwell	Science Lo	ndon 201	0 5th edn
3. 4.				
	sted Readings	, i cuisoli,	2012, Hu	
00	Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinso	n P I. Gu	as John V	Wiley 2002 3rd
···	edn.	, i . L. Ou	15, JOIII \	, 110y, 2002, 510
2		Ouglas D	McDania	l, J. Alexander,
۷.	John Wiley, 1994, 3rd edn.	ougias, D.		1, J. AICAAIIUCI,
3.	Inorganic Chemistry, J. E. Huheey, E. A. Kieter and R. 2006. 4th edm	L. Keiter, H	larper Co	llins, New York,
А	2006, 4th edn.	U Enganna	and Ca	London 2010
4. 5	Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W.			
5.	Inorganic Chemistry: A Modern Introduction, T. Moe	eller, Wiley,	new Yor	к, 1990.

Web Resources

- 1. <u>https://bit.ly/3AyV3mZ</u>
- 2. <u>https://nptel.ac.in/courses/104/104/104104101/</u>
- 3. <u>https://nptel.ac.in/courses/104/103/104103019/</u>
- 4. <u>https://nptel.ac.in/courses/104/101/104101090/</u>
- 5. <u>https://nptel.ac.in/courses/104/105/104105103/</u>

COs	CO Description	Cognitive Level
CO 1	To understand the basic concepts of lattice energy, crystal packing, impact of hydrogen bonding on the properties of molecules, chemical properties of <i>s</i> - and <i>p</i> -block elements.	K1, K2
CO 2	To illustrate the factors, influence the formation of ionic and non- covalently bonded compounds, preparation and properties of compounds of main group elements.	К3
CO 3	To analyze the covalency in ionic compounds, different types of crystal packing, van der Waals forces and structure of oxides of <i>s</i> -and <i>p</i> -block elements.	K4
CO 4	To determine the effect of polarization in ionic compounds, crystal systems, effect of hydrogen bonding on the physical properties, properties of <i>s</i> - and <i>p</i> -block elements.	K5
CO 5	To construct Born-Haber cycle, hcp and ccp closed packing and to synthesize the clathrates, crystalline hydrates and compounds of main group elements.	К6

Course Code	UCH 2503		
Course Title	ORGANIC QUALITATIVE ANALYSIS		
Credits	04		
Hours/Week	04		
Category	MAJOR CORE (MC) - Practical		
Semester	II		
Regulation	2019		
Course Overvie	W		
1. This of	course deals with the practical knowledge of chemistry of organic functional groups.		
2. This	course provides the theory behind characteristic reactions of various organic		
funct	ional groups.		
3. The a	im of this course is to give the knowledge of identification of organic functional		
groups by characteristic reactions and methods of preparation.			
4. The other important aspect of this course is to check the purity of prepared compounds.			
5. This course also discusses on the preparation of derivatives of all functional groups.			
Course Objectiv	ves		
1. To understand the chemistry of functionalized organic compounds.			
2. To describe the physical and chemical properties of simple organic compounds.			
3. To explain the procedure for the systematic analysis of oxygen and nitrogen based			
functional groups.			
4. To analyze and articulate simple methods of preparation of functional group derivatives.			
5. To de	termine the chemical nature and the purity of the prepared derivatives by simple		
testing	j.		
Prerequisites	Knowledge on basic concepts of chemistry.		

SYLLABUS	
----------	--

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
I	 Organic analysis of mono- and bifunctional compounds. a. Identification of acidic, basic, phenolic, and neutral organic substances. b. Detection of nitrogen, sulphur and halogens. c. Test for aliphatic and aromatic nature of substances d. Test for saturation and unsaturation. e. Identification of functional groups: (i) Carboxylic acids (ii) Phenols (iii) Aldehydes (iv) Ketones (v) Esters (vi) Carbohydrates (vii) Amines (viii) Amides 	40	CO 1 CO 2 CO 3 CO 4 CO 5	LEVEL K1, K2, K3, K4, K5, K6
	(ix) Anilides (x) Nitro (xi) Halogen compounds.f. Preparation of derivatives for the functional groups.			

II	Determination of melting and boiling points of	12	CO 1	K1, K2, K3,		
	organic compounds.		CO 2	K4, K5, K6		
			CO 3			
			CO 4			
			CO 5			
Text Bo	oks					
1.	N.S. Gnanapragasam and G. Ramamurthy, G	Organic Che	mistry -L	Lab manual, S.		
	Viswanathan Co. Pvt., 2002.					
2.	Jeyavathana Samuel, Chemistry practical book, G.	G. Printers, C	Chennai.			
Suggested Readings						
1.	1. J.N. Gurthu and R. Kapoor, Advanced Experimental Chemistry S. Chand and Co., New					
	Delhi1987.					
2.	S. Sundaram, P. Krishnan and P.S. Raghavan, Practical Chemistry S. Viswanathan Pvt. Ltd,					
	Chennai, 1996.					
3.	B.S. Furniss, A.J. Hannaford, P.W. G. Smith and A.R. Tatchell, Vogel's Text Book of					
Practical Organic Chemistry Pearson Edition, 2005, 5th edn.						
Web Resources						
1. <u>https://bit.ly/3vEytbP</u>						

2. https://bit.ly/3vet23a

COs	CO Description	
		Level
CO 1	To understand the basic concepts of chemistry of various organic functional	K1, K2
	groups.	
CO 2	To assess the physical and chemical properties of various functionalized	К3
	organic compounds.	
CO 3	To explain the procedure for the systematic analysis of different functional	K4
	groups by various methods.	
CO 4	To analyze the chemical nature of various functional groups as well as their	K5
	methods of preparation.	
CO 5	To examine the purity of the derivatives prepared for various functional	K6
	groups.	

Course Code	UCH 3501					
Course Title	STEREOCHEMISTRY AND ORGANIC FUNCTIONAL GROUPS-I					
Credits	04					
Hours/Week	04					
Category	Major Core (MC) - Theory					
Semester	III					
Regulation	2019					
Course Overviev	v					
1. The impo	ortance of this course is to explain the basic concepts, requirements and types of					
various st	ereoisomerism.					
	er explains the nomenclature, classification and synthesis of some important					
organic c	organic compounds.					
3. It also illu	3. It also illustrates the mechanism, orientation, and stereochemistry of various types of organic					
	reactions.					
	of this subject is to provide the knowledge on physical and chemical properties of					
1	oortant organic functional groups.					
5. This cour	5. This course also covers the applications of different organic reagents.					
Course Objective	Course Objectives					
1. To identif	fy the type of isomerism existing in organic molecules.					
2. To predic	2. To predict the mechanism, stereochemistry and orientation of nucleophilic substitution and					
elimination reactions.						
3. To apply various methods of synthesis of organic compounds.						
4. To describe the physical and chemical properties and applications of some important class						
of organic compounds.						
5. To demo	onstrate the mechanism and synthetic applications of some important name					
reactions.						
Prerequisites Basic knowledge of the concepts of organic chemistry						

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Stereochemistry	12	CO 1	K1, K2, K3,
	1.1 Nomenclature, Geometrical isomerism:		CO 2	K4, K5, K6
	cis-trans, Z/E, syn-anti, Conformational		CO 3	
	isomerism, conformations of ethane,		CO 4	
	butane, and cyclohexane. Optical		CO 5	
	isomerism, optical activity, prochirality,			
	optical and specific rotations, conditions			
	for optical activity, asymmetric centre,			
	chirality, achiral molecules, meaning of			
	(+) and (-) notations, elements of			
	symmetry, racemization, methods of			
	racemization (by substitution and			
	tautomerism), methods of resolution			
	(mechanical, seeding, biochemical and			
	conversion to diastereomers),			

SYLLABUS

	asymmetric synthesis (partial and			
	absolute synthesis), Walden inversion.			
	1.2 Projection Formula, Fischer, flying			
	wedge, sawhorse and Newman			
	projection formulae – notation of optical			
	isomers. D & L notations, Cahn-Ingold-			
	Prelog rules, R & S notations for optical			
	isomers with one and two asymmetric			
	carbon atoms, erythro- and threo-			
	representations.			
	1.3 Optical activity in compounds not			
	containing asymmetric carbon atoms			
	namely biphenyls, allenes and spiranes			
	(atropisomerism).			
II	Aliphatic and Aromatic Halides	10	CO 1	K1, K2, K3,
	2.1 Nomenclature and classification.		CO 2	K4, K5, K6
	Preparation of aliphatic and aromatic		CO 3	
	halides: Free radical mechanism,		CO 4	
	addition and Substitution reactions.		CO 5	
	2.2 Reactions: Nucleophilic substitutions,			
	S_N1 , S_N2 , S_NAr and S_Ni mechanisms and			
	stereochemistry			
	2.3 Eliminations: E1 and E2 mechanisms,			
	Saytzeff and Hoffmann rules,			
	orientations and stereochemistry.			
III	Hydroxy Derivatives	10	CO 1	K1, K2, K3,
	3.1 Aliphatic alcohols: Preparation by		CO 2	K4, K5, K6
	hydroboration-oxidation,		CO 3	
	oxymercuration- demercuration,		CO 4	
	reduction of carbonyl compounds,		CO 5	
-	reduction of carbonyr compounds,		05	
	epoxidation, Grignard synthesis and		05	
	epoxidation, Grignard synthesis and haloform reaction, reactions with		05	
	epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O-		05	
	epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage.		03	
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: 		03	
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, 		05	
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: 		03	
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from 		05	
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from diazonium salts. 		03	
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from diazonium salts. 3.3 Reactions: acidity, ether formation, ester 		03	
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from diazonium salts. 3.3 Reactions: acidity, ether formation, ester formation, mechanism of ring 			
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from diazonium salts. 3.3 Reactions: acidity, ether formation, ester formation, mechanism of ring substitution, nitration, sulphonation, 			
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from diazonium salts. 3.3 Reactions: acidity, ether formation, ester formation, mechanism of ring substitution, nitration, sulphonation, halogenation, Friedel-Craft's reaction, 			
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from diazonium salts. 3.3 Reactions: acidity, ether formation, ester formation, mechanism of ring substitution, nitration, sulphonation, halogenation, Friedel-Craft's reaction, nitrosation, coupling reactions, Kolbe's 			
	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from diazonium salts. 3.3 Reactions: acidity, ether formation, ester formation, mechanism of ring substitution, nitration, sulphonation, halogenation, Friedel-Craft's reaction, nitrosation, coupling reactions, Kolbe's reaction and Riemer-Tiemann reaction. 			
IV	 epoxidation, Grignard synthesis and haloform reaction, reactions with reference to C-OH bond cleavage and O- H bond cleavage. 3.2 Aromatic alcohols: Phenols: Nomenclature, physical properties, hydrogen bonding. Preparation: Industrial source, preparation from diazonium salts. 3.3 Reactions: acidity, ether formation, ester formation, mechanism of ring substitution, nitration, sulphonation, halogenation, Friedel-Craft's reaction, nitrosation, coupling reactions, Kolbe's 	9	CO 1 CO 2	K1, K2, K3, K4, K5, K6

	preparation of aliphatic, aromatic and		CO 3		
	cyclic ethers including crown ethers by		CO 4		
	Williamson's synthesis,		CO 5		
	alkoxymercuration-demercuration and				
	bimolecular dehydration of alcohols.				
	-				
	4.2 Reactions: Cleavage by acids and				
	oxidation to peroxides.				
	4.3 Preparation and reactions of epoxides.				
	Ring opening reactions by acid and base				
	catalysts and organometallic reagents.				
V	Nitro and Amine Compounds	11	CO 1	K1, K2, K3,	
	5.1 Nitro compounds: Nomenclature and		CO 2	K4, K5, K6	
	classification, aliphatic and aromatic		CO 3	11, 110, 110	
	-				
	nitro compounds, physical and chemical		CO 4		
	properties. Preparation by nitration and		CO 5		
	oxidation of amines. Reactions:				
	reduction by chemical and electrolytic				
	methods. Di- and tri-substitution of				
	aromatic nitro compounds: synthesis of				
	o-, m-, p-dinitrobenzenes and				
	trinitrobenzene.				
	5.2 Aromatic amines: Preparation of primary,				
	secondary and tertiary amines: Gabriel				
	phthalimide synthesis; separation of				
	primary, secondary and tertiary amines:				
	Hinsberg test. Reactions: basicity of				
	amines, effect of substituents on basicity				
	of aromatic amines.				
	5.3 Diazonium salts: Preparation,				
	diazotisation reactions, replacement				
	reactions: Sandmeyer, Gatterman and				
	Gomberg reactions, coupling reactions.				
Text B					
1.	R. T. Morrison, R.N. Boyd, S. K. Battachargee	, 2014, Orga	nic Chem	istry, 7 th Edition,	
	Printice-Hall of India Limited, New Delhi.				
2.	P.S. Kalsi 2019, Stereochemistry of Carbo	n Compoun	ds,10 th Edi	tion, New Age	
International, New Delhi					
3. Bahl and Arun Bahl, 2016, Organic Chemistry, 22nd Edition, S. Chand and Sons, New Delhi					
	M.K. Jain and S.C. Sharma, 2017, Modern Organic				
<u>т.</u>	New Delhi.	. chemistry,	. 151141 1 40	company,	
5		w 11th ⊡⊿:⊄	n John W	iloy and Sona	
	5. T. W. Graham Solomons, 2015, Organic Chemistry, 11 th Edition, John Wiley and Sons				
6. B. Y. Paula, 2013, Organic Chemistry, 7 th Edition, Pearson Education, Inc., New Delhi,					
reprint.					
Suggested Readings					
1. M. B. Smith, 2015, March's Advanced Organic Chemistry, 7 th Edition, John Wiley and sons.					
2. E. L. Eliel, 2001, Stereochemistry of Carbon Compounds, Tata-McGraw Hill Publications,					
New Delhi.					
L					

- 3. S. H. Pine, 2006, Organic Chemistry, 5th Edition, McGraw Hill, International Edition, Chemistry Series, New York.
- 4. F. A. Carey,2017, Organic Chemistry, 8th Edition, Tata-McGraw Hill, Publications, New Delhi.
- 5. I. L. Finar, 2004, Organic Chemistry Volume 1, 6th Edition, Pearson Education Asia.

Web Resources

- 1. <u>https://www.chemistryworld.com/organic-chemistry/211.subject</u>
- 2. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm
- 3. https://www.studyorgo.com/summary.php
- 4. https://bit.ly/3niyxKx

COs	CO Description	Cognitive
		Level
CO 1	To recall and understand the nomenclature and classifications of some	K1, K2
	important organic compounds.	
CO 2	To predict the orientation, mechanism and applications of different types	К3
	of organic reactions.	
CO 3	To explain the type of isomerism, synthesis, physical and chemical	K4
	properties of oxygen, halogen and nitrogen based organic compounds.	
CO 4	To justify the stereochemistry and mechanism of different functionalized	K5
	organic compounds.	
CO 5	To validate and apply the knowledge of stereochemistry and mechanistic	K6
	approach for various organic reactions.	

Course Code	UCH 3502
Course Title	INORGANIC QUALITATIVE ANALYSIS
Credits	04
Hours/Week	04
Category	Major Core (MC) - Practical
Semester	III
Regulation	2019

Course Overview

- 1. The aim of the course is to give basic knowledge about the various chemical reactions of interfering and non-interfering anions, and cations present in a salt/salt mixture
- 2. The different modules of the course will examine the analytical skills in inorganic qualitative analysis.
- 3. Analysis of a salt by preliminary test often furnishes important information, which simplifies further course of analysis.
- 4. Qualitative analysis of inorganic salts includes the grouping of cations and separation of cations into different groups.
- 5. This course discusses on the preparation of coordination compounds and the various techniques used for crystallization.

Course Objectives

- 1. To identify the anions and cations present in a salt and in a mixture of salts.
- 2. To demonstrate the principles of solubility product, pH and common ion effect involved in the semimicro qualitative analysis.
- 3. To develop qualitative analytical skills.
- 4. To learn the effective usage of chemical reagents.
- 5. To acquire the knowledge in the preparation of coordination compounds.

Prerequisites	Basic knowledge of Chemistry

F	Syllabus			
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	 Semimicro Qualitative Analysis 1. Analysis of mixture containing interfering and noninterfering anions. Simple anions: carbonate, nitrate, sulphate, sulphide, sulphite, chloride and bromide. Interfering anions: borate, fluoride, oxalate and phosphate 	48	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
	 2. Mixture of cations of simple radicals to familiarize with the inter group separation techniques. Cations: Group I : lead. Group II : copper, cadmium, bismuth, antimony, tin. Group III: aluminium, ferrous, ferric, chromium. Group IV: cobalt, nickel, manganese, zinc. Group V : barium, strontium, calcium Group VI: magnesium. Zero group: ammonium ion. 			
П	 Preparations of Coordination Complexes Preparation of tetraamminecopper(II) sulphate. Preparation of potassium trisoxalatoaluminate(III). Preparation of potassium trisoxalatochromate(III). Preparation of hexamminecobalt(III) chloride 	4	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
Un 2. V 3. Je Suggested 1. V. Pt 2. G.	ya Rajendran, Microanalytical Techniques in Chernited Global Publishers, Chennai, 2021. ogel's Inorganic Qualitative Analysis, 4th edn., EL yavathana Samuel, Chemistry Practical Book, Lab Readings V. Ramanujam, Inorganic Semi Micro Qualita ublishing Company, 3 rd Edn., Chennai, 1974. Svehla, Vogel's Qualiltative Chemical Analysis, F	BS, Londor Manual, Ch tive Analy Pearson, Deb	n, 1974. nennai, 20 sis, 3 rd E lhi, 2009.	20. Ed., The National
	N. Pandey, D.N. Bajpai, S. Chand & Co Ltd, Pra 110	ictical Cher	nistry, S.	Chand & Co Ltd,

Syllabus

Web Resources

1. <u>https://bit.ly/3vaGgxV</u>

COs	CO Description	Cognitive level
CO 1	To identify the anions and cations present in a mixture of salts.	K1, K2
CO 2	To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.	К3
CO 3	To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.	K4
CO 4	To choose the appropriate chemical reagents for the detection of anions and cations.	K5
CO 5	To synthesize coordination compounds with high purity.	K6

Course Code	UCH 3503
Course Title	THERMODYNAMICS
Credits	04
Hours/Week	04
Category	Major Core (MC) - Theory
Semester	III
Regulation	2019

Course Overview

- 1. Thermodynamics deals with the energy changes accompanied with all physical and chemical processes.
- 2. The aim of the course is to provide the fundamental knowledge about the flow of heat energy and spontaneity of the chemical reactions.
- 3. This course illustrates the behaviour of ideal and real gases and determine the thermodynamic parameters for different physical and chemical processes.
- 4. This course describes the applications of thermodynamics in construction of heat engines, refrigerator, etc., and deals with the effect of pressure, temperature and concentration on heat energy and equilibria.
- 5. It helps in evaluation of thermodynamic parameters using the concepts of classical and statistical thermodynamics

Course Objectives:

- 1. To understand the fundamental differences between real and ideal gases.
- 2. To outline the basic aspects of various processes and the laws of thermodynamics.
- 3. To assess the relationship among various thermodynamic parameters and to predict the feasibility of chemical reactions.
- 4. To analyze the effect of temperature and pressure on chemical equilibria.
- 5. To compute the energies, thermodynamic state and partition functions.

Prerequisites	Basic knowledge of Chemistry, Physics and Mathematics
---------------	---

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Gaseous State and First Law of	12	CO 1	K1, K2, K3,
	Thermodynamics		CO 2	K4, K5, K6
	1.1 Behaviour of ideal gases: Kinetic theory of		CO 3	
	gases - postulates and derivation of the		CO 4	
	equation, $PV = 1/3 \text{ mnc}^2$ and derivation of the		CO 5	
	gas laws- Maxwell's distribution of molecular			
	velocities-effect of temperature-types of			
	molecular velocities-degrees of freedom-			

		Principle of equipartition of energy.			
	1.2	e			
		ideal behaviour, derivation of van der Waals			
		equation of state and critical constants.			
	1.3	Terminology used in thermodynamics:			
		Thermodynamic processes- Exact & inexact			
		differentials, state & path functions, intensive			
		and extensive properties. First law of			
		thermodynamics: Statement and			
		mathematical formulation.			
TT	A		10	CO 1	
II		plications of First Law of Thermodynamics	10	CO 1	K1, K2, K3,
		Thermochemistry		CO 2	K4, K5, K6
	2.1	Applications of first law of thermodynamics		CO 3	
		to ideal gases: Heat capacity, relation		CO 4	
		between C_P and C_V . Isothermal process:		CO 5	
		Change in internal energy, enthalpy change,			
		heat absorbed, W (rev) and W (irrev). Adiabatic			
		process: Calculation of q, w, ΔE and ΔH .			
	2.2	Applications of first law of thermodynamics			
		to real (van der Waals) gases: Isothermal			
		process- Work done, change in internal			
		energy, heat absorbed. Adiabatic process:			
		Work done - Joule - Thomson effect. Joule-			
		Thomson coefficient and its significance,			
		_			
	22	inversion temperature.			
	2.3	5			
		changes, heat of a reaction. Calculation of			
		change in internal energy from the enthalpy			
		change. Standard states and standard heat of			
		formation. Variation of enthalpy change of			
		reaction with temperature (Kirchoff's			
		equation).			
	2.4	Integral and differential heat of solution and			
		dilution, heat of neutralization, heat of			
		hydration, heat of transition, heat of			
		combustion. Bond energy and its			
		applications. Hess's law – Illustration and			
		applications.			
III	So	cond Law of Thermodynamics	10	CO 1	K1, K2, K3,
		Limitations of first law and need for the	10	CO 1 CO 2	K1, K2, K3, K4, K5, K6
	5.1	second law. Statements of second law. Carnot		CO 2 CO 3	к т , к <i>э</i> , ко
		cycle-Efficiency. Thermodynamic principle		CO 4	
		of working of a refrigerator.		CO 5	
	3.2	Concept of entropy-Helmholtz work			
		function-Gibbs free energy-Criteria of			
		spontaneity. Evaluation of ΔG and ΔS for the			
		mixing, Maxwell's equations and			

	thermodynamic equation of state. Gibbs-			
	Helmholtz equation and its applications.			
		4.0	~~ .	
IV	Thermodynamics of Reversible Processes	10	CO 1	K1, K2, K3,
	4.1 Law of mass action: Various forms of		CO 2	K4, K5, K6
	equilibrium constants. Relationship between		CO 3	
	Kp and Kc, significance of equilibrium		CO 4	
	constants. van't Hoff isotherm. Derivation of		CO 5	
	thermodynamic equilibrium constant and its			
	relationship with change in standard free			
	energy. van't Hoff isochore.			
	4.2 Le-Chatelier-Braun principle: Formation of			
	ammonia. Application of law of mass action			
	and Le-Chatelier-Braun principle to			
	homogeneous gaseous reactions:			
	Dissociation of N_2O_4 , NH_3 , HI and PCl_5 .			
V	Third Law of Thermodynamics and Statistical	10	CO 1	K1, K2, K3,
v	Thermodynamics	10	CO 1 CO 2	
	5.1 Nernst heat theorem- Planck and Lewis		CO 2 CO 3	K4, K5, K6
	Randall formulation of third law.		CO 4	
	5.2 Absolute entropy of solids, liquids and gases.		CO 5	
	Evaluations of the standard entropy of			
	oxygen, on the basis of heat capacity.			
	Exceptions to third law of thermodynamics.			
	5.3 Difference between classical thermodynamics			
	and statistical thermodynamics.			
	Thermodynamic probability – macro and			
	microstates, most probable distribution.			
	Stirling's approximation. Maxwell-			
	Boltzmann statistics (No Derivation)-			
	Assumptions. Partition function -separation			
	and relation between partition function and			
	energy.			
Text B	ooks			
1.	Puri, B. R., Sharma, L.R. Pathania, M.S. 2013, P	rinciples of	Physical	Chemistry, 35th
	edition, Shoban Lal Nagin Chand and Co., Delhi.			
2.	Bahl, B. S. Arun, Bahl, Tuli, G.D. 2009, Essentia	ls of Physic	cal Chemis	stry, S Chand &
	Company Pvt Ltd, Multicolour edition.			
3.	Maron, S.H. Lando, J.B. 1974, Fundamentals o	f Physical	Chemistry	, New Edition.
	Macmillan limited, NY.	2	5	,
4.	Atkins, P.W. 2001, Physical Chemistry, 7th edition,	Oxford univ	versity pres	S
5.	Dogra, S.K. Dogra, S.1996, Physical Chemistry Th		• •	
5.	international.			
6.	Sangaranarayanan MV, Mahadevan V, 2011, Textb	ook of Phys	tical Chem	istry University
0.	press, Hyderabad, India.	OOK OF FILYS		usuy, Oniversity
	press, myuerabau, muta.			

Suggested Readings

- 1. Kalidas, C, Sangaranarayanan, M. V. 2019, Problems and Solutions: Physical Chemistry, 1st edition, Universities Press
- 2. Rajaram, G. Kuriacose, J.C. 2006, Thermodynamics, new edition, Shoban Lal Nagin Chand and Co.
- 3. Castellan, G. W. 1985, Physical Chemistry, 3rd edition, Narosa Publishing House
- 4. Klotz, M. Rosenberg, R.M. 1994, Chemical Thermodynamics, 5th revised edition, John Wiley and sons Inc.
- 5. Gupta, M. C. 1991, Statistical Thermodynamics, 1st edition, Halsted Press.

Web Resources

- 1. https://bit.ly/3ax89GS
- 2. <u>https://bit.ly/3pry1N6</u>
- 3. https://bit.ly/3BGE6Z9
- 4. <u>https://bit.ly/3lCzUUP</u>

COs	CO Description	Cognitive Level
CO 1	To describe the behaviour of ideal and real gases, characteristics of equilibrium constant and state the principle and fundamental aspects of classical and statistical thermodynamics.	K1, K2
CO 2	To demonstrate the basic aspects of various physical and chemical processes and predict the value of thermodynamic state functions using laws of thermodynamics.	К3
CO 3	To analyze the principle of thermodynamics in the calculation of thermal energies, state functions, construction of heat engines, refrigerator, prediction of absolute entropies and equilibrium.	K4
CO 4	To evaluate thermodynamic parameters, the effect of temperature, pressure and concentration in different equilibria.	К5
CO 5	To derive the expressions for the evaluation of thermodynamic quantities classically and statistically.	K6

Course Code	UCH 4501
Course Title	ELECTROCHEMISTRY
Credits	03
Hours/Week	03
Category	Major Core (MC) - Theory
Semester	IV
Regulation	2019
Comment Operation	

Course Overview

- 1. Electrochemistry deals with the inter-conversion of chemical and electrical energies in electrolytic and electrochemical cells.
- 2. One of the aims of the course is to give knowledge on the components of an electrochemical cell, types of electrodes and the importance of electrochemical series.
- 3. This course involves the calculation of thermodynamic parameters such as ΔG , ΔH , ΔS , K_{equi} , etc. using Nernst equation.
- 4. The other aspects of electrochemistry to be covered include: types of cells, theories of electrolytic dissociation, behaviour of electrolytes in solutions, conductance of ionic species.
- 5. This course also deals with the applications of electro chemistry such as corrosion, over voltage and polarography.

Course Objectives:

- 1. To apply Nernst equation to different electrochemical systems and calculate the thermodynamic parameters using EMF measurements.
- 2. To classify electrochemical and concentration cells with and without transference.
- 3. To apply the laws of electrochemistry to electrolytes.
- 4. To evaluate conductance and transport number of ionic species of an electrolyte.
- 5. To differentiate between polarization and overvoltage, outline the principle of polarography.

Prerequisites	Basic knowledge of Chemistry, Physics and Mathematics
---------------	---

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	EQUILIBRIUM ELECTROCHEMISTRY	8	CO 1	K1, K2, K3,
	1.1 Electrode potential – measurement, electrode		CO 2	K4, K5, K6
	types - reference electrodes-standard		CO 3	
	hydrogen electrode and calomel electrode,		CO 4	
	graphite, Metal-Metal ion, gas, Metal-		CO 5	
	insoluble salt and redox electrodes.			
	1.2 Cell potential -Weston cell, measurement			
	using potentiometer. Calculation of cell			
	potential from single electrode potentials.			
	Electrochemical series and its applications.			

	K1, K2, K3,
ELECTROCHEMICAL SYSTEMS CO 2	K4, K5, K6
2.1 Thermodynamics of electrochemical reactions CO 3	
–Nernst equation and its applications – CO 4	
relationship between EMF and free energy, CO 5	
enthalpy, entropy changes and equilibrium	
constant. Chemical and concentration cells	
with and without transference. Liquid junction	
potential.	
2.2 Potentiometric titrations –principle, types –	
redox and precipitation titrations. Applications	
of EMF - potentiometric measurement of pH	
using hydrogen, quinhydrone and glass	
electrodes. Solubility product of sparingly	
soluble salt.	
III NON-EQUILIBRIUM 8 CO 1	K1, K2, K3,
ELECTROCHEMISTRY CO 2	K4, K5, K6
3.1 Equivalent and molar conductance and CO 3	, ,
variation with concentration. Kohlrausch's law CO 4	
and its applications. Applications of CO 5	
conductance measurements – determination of	
degree of dissociation and conductometric	
acid-base (strong acid-strong base, weak acid-	
strong base and mixture of acids - strong base)	
and precipitation titration.	
3.2 Transport number: Absolute velocity of ions	
and ionic mobilities. Hittorf's rule,	
Determination of transference numbers –	
Hittorf's and moving boundary method.	
IV IONICS 8 CO 1	K1, K2, K3,
4.1 Ostwald's dilution law. Arrhenius theory of CO 2	K4, K5, K6
electrolytic dissociation – evidences and CO 3	
limitations – van't Hoff factor. CO 4	
4.2 Activities and activity coefficients of CO 5	
electrolytes – ionic strength - Debye-Huckel	
theory of activity coefficients and Debye-	
Huckel-Onsager equation (no derivation	
required)– electrophoretic effect and	
asymmetric effect.	
VPOLARISATION AND OVERVOLTAGE8CO 1	K1, K2, K3,
5.1 Polarization of electrodes –concentration CO 2	K4, K5, K6
polarization. Polarography –Principle, CO 3	
dropping mercury electrode, Ilkovic equation, CO 4	
significance of half-wave potential and CO 5	
diffusion current.	
5.2 Overvoltage – Decomposition potential,	
Hydrogen overvoltage. Electrochemical	

		theory of corrosion.			
Te	Text Books				
	1.	Puri, B. R., Sharma, L.R. Pathania, M.S. 2017, Princip	ples of Physi	cal Chem	istry, 47 th edition,
		Shoban Lal Nagin Chand and Co., Delhi.			
	2.	Glasstone.S. 2008, An Introduction to electrochemi	stry, 6 th edit	tion, East	-West Press Pvt.
		Ltd., New Delhi.			
	3.	B. Dogra, S.K. Dogra, S.1996, Physical Chemistry through Problems, 4 th edition, New age international.			
	4.	Atkins. P and Paula J.D. 2014, Physical Chemistry, 10th edition, Oxford University press.			
	5.	5. Sangaranarayanan MV, Mahadevan V, 2011, Textbook of Physical Chemistry, University			nistry, University
	_	press, Hyderabad, India.			
	6.				
		Spectroscopy, McGraw-Hill; Sixth edition, Delhi.			
Su	Suggested Readings				
	1.	· · · · · · · · · · · · · · · · · · ·			
	2.	. Vladimir S. Bagotsky. 2005, Fundamentals of electrochemistry, 2 nd edition, Wiley.			
	3.	John O'M. Bockris Amulya K.N. Reddy Maria E. Gamboa-Aldeco. 2008, Modern			
		Electrochemistry (Vol-1 and 2), 2 nd Edition, Springer, Plenum Press, New York, US.			
We	Web Resources				
1.	htt	https://bit.ly/3FHfySh			
2.	https://bit.ly/2YN7RJu				
3.					
4.					

COs	CO Description	Cognitive Level
CO 1	To describe electrode potential, types of electrodes, electrolytes, electrochemical cells, polarization, over voltage and discuss the theories of electrolytes.	K1, K2
CO 2	To apply Nernst equation to calculate cell potential and illustrate the principles of corrosion, conductometric and potentiometric titrations.	К3
CO 3	To outline the concepts of polarization, overvoltage, polarography and deduce ΔG , ΔH , ΔS , etc using EMF.	K4
CO 4	To measure the electrochemical parameters such as potential, conductance, pH, EMF, ionic strength, mobility, transport number of ionic species, etc.	K5
CO 5	To develop problem solving skills and derive expressions for transference number of ions, activity coefficient, electrochemical and concentration cells with and without transference.	К6

Course Co	de UCH 4502	
Course Tit	tle PHYSICAL CHEMISTRY PRACTICALS	
Credits	Credits 03	
Hours/We	ek 03	
Category	Major Core (MC) - Lab	
Semester	IV	
Regulation	a 2019	
ele 2. Th ins 3. Th pos 4. Th bet 5. Th and	is practical paper makes use of the concepts of thermodynamics, equilibria, kinetics and ctrochemistry. is course helps the students to get trained in safe handling of chemicals, apparatus and truments. e laboratory ambience gained through this course can cultivate the required skill for a sition in an industry/company/factory/research laboratory. e paper aims at improving analytical skills and it is reflected in terms of the agreement ween graphical and experimental data. e course shapes the students' frame of mind towards the scientific interpretation of data d helps to improve their efficiency for societal developments.	
1. To	ourse Objectives:1. To apply the concepts of phase rule for the construction of phase diagrams of simple eutection systems.	
 To To To To 	To evaluate the rate constant of pseudo first order and second order reactions.	

5. To scientifically verify the agreement between experimental and graphical data.

Prerequisites	Basic knowledge of Chemistry, Physics and Mathematics
-	

EXPT	CONTENT	HOURS	COs	COGNITIVE LEVEL
1	1. Determination of partition coefficient of iodine	39	CO 1	K1, K2, K3,
	between water and carbon tetrachloride		CO 2	K4, K5, K6
	2. Determination of equilibrium constant for the		CO 3	
	formation of potassium triiodide from iodine		CO 4	
	and KI.		CO 5	
	 Construction of phase diagram of a simple eutec system and determination of unknown composition. 			
	4. Determination of critical solution temperature of phenol-water system.			
	5. Effect of impurities on critical solution temperature of phenol-water system.			

	6. Determination of molecular weight of a non-			
	volatile solute by Rast's method.			
	7. Determination of transition temperature of salt			
	hydrates by Rast's method.			
	8. Kinetics of acid catalyzed hydrolysis of an ester.			
	9. Kinetics of persulphate-iodide reaction.			
	10. Verification of Freundlich adsorption isotherm			
	-Study of adsorption of acetic acid or oxalic			
	acid on charcoal and determination of			
	concentration of the given acid.			
	11. Determination of strength of a strong acid by			
	conductometric titration (HCl vs NaOH).			
	12. Determination of strength of a weak acid by			
	conductometric titration (CH ₃ COOH vs			
	NaOH).			
	13. Determination of limiting molar conductance			
	of a strong electrolyte (KCl) by conductometry.			
	14. Determination of strength of a strong acid by			
	potentiometric titration (HCl vs NaOH).			
	15. Determination of strength of a weak acid by			
	potentiometric titration (CH ₃ COOH <i>vs</i> NaOH).			
	16. Determination of solubility product of a			
	sparingly soluble substance by potentiometric			
	titration.			
	17. Determination of the strength of Fe(II) by			
	potentiometric redox titration.			
Text B	Books			
1.	R. Veeraswamy, V. Venkateswaran and A. R. Kula	andaivelu 2	2015, Bas	ic principles of
	practical Chemistry, 2nd edition, Sultan Chand & Sons	s.		
2.	Jeyavathana Samuel 2000, Chemistry Practical Book	k, 1st edition	n, Kalos	Offset Division,
2	Chennai.			
3.	Dr. R. Rajalakshmi 2020, Physical Chemistry Experim edition, Notion Press India.	nents for Ur	idergradu	ate Students, 1st
4.		vsical Chem	istry 1st	edition AkiNik
	Publications.		1311 <i>y</i> , 131	Controlly 7 KILVIK
5.	Gurtu J.N., Amit Gurtu 2011, Adv. Physical Chemi	stry Experi	ments,1st	edition, Pragati
	Prakashan			-
00	sted Readings	Б. і		,
1.		y –Experim	iental asp	ects in physical
2.	chemistry Volume-7, 1st edition, McGraw-Hill India. Khosla, B. D.; Garg, V. C. & Gulati, A.2018, Senio	or Practical	Physical	Chemistry 18th
۷.	edition, R. Chand & Co.: New Delhi.	or r ractical	i nysical	Chemistry, rotti
3.		al Chemistr	v 2nd edi	tion Viva books

- 3. B.Viswanathan; P.S. Raghavan 2005, Practical Physical Chemistry, 2nd edition, Viva books.
- 4. Athawale, V. D. & Mathur, P. 2001, Experimental Physical Chemistry, 1st edition, New Age International: New Delhi.
- 5. David P. Shoemaker, Carl W. Garland, Joseph W.Nibler, 1989, Experiments in Physical Chemistry, 5th edition, McGraw-Hill Book Company.

Web Resources

- 1. https://nptel.ac.in/content/storage2/courses/122101001/downloads/lec-24.pdf
- 2. <u>https://bit.ly/3AKVuuL</u>

COs	CO Description	Cognitive Level
CO 1	To recall the principles of various physical chemistry experiments.	K1, K2
CO 2	To systematically perform the procedure relating to electrical and non- electrical experiments.	К3
CO 3	To scientifically observe and record the readings in all the experiments.	K4
CO 4	To calculate and process the measured values obtained from the experiments.	К5
CO 5	To consolidate, summarize and present the results of all the experiments.	K6

Course Code	UCH 4601	
Course Title CHEMISTRY OF FOOD AND CONSUMER PRODUCTS		
Credits 04		
Hours/Week 06		
Category	Major Elective (ME) – Theory	
Semester	IV	
Regulation	2019	
Course overview		
1. The importance of this course is to explain the basic concepts of chemistry of food materials		
2. It also elaborates the basic functions of food constituents.		
3. This paper explores the various analytical techniques to quantify the standard of foo materials.		
4. The course covers the hygiene and usage of food additives.		
5. The course also describes the various components of manufacture of consumer products.		
Course objectives		
1. To illustrate	the basic concepts of carbohydrates, proteins and enzymes in food materials.	
2. To elaborate	2. To elaborate the functions of food constituents like vitamins and minerals.	
3. To estimate the standard of various food materials.		
4. To justify the usage of additives in modern food components.		
5. To compile t	he various components in the manufacture of soaps, detergents, and cosmetics.	
Prerequisites Basics of Food Chemistry and Industrial Chemistry		

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Introduction and Constituents of Foods-I	16	CO 1	K1, K2, K3,
	1.1 Food: source, functions of food-basic five		CO 2	K4, K5, K6
	food groups		CO 3	
	1.2 Carbohydrates: Classification and structure		CO 4	
	of monosaccharides, glucose, fructose		CO 5	
	structure of sucrose, maltose, lactose and			
	starch. Functions Artificial sweetening			
	agents. Effect of cooking on the nutritive			
	value of rice and of baking of wheat-bread			
	and biscuit, processing and storage of			
	carbohydrates.			
	1.3 Proteins: amino acids– peptides– proteins,			
	modification of food products through heat			
	processing. Effect of cooking-steaming or			
	cooking under pressure of legumes.			
	Detoxication.			
	1.4 Enzymes: Enzymes used in food			
	processing. Enzymic browning-mode of			
	action, secondary reaction of o-quinones,			
	prevention of enzymic browning– thermal			
	inactivation, Non-enzymic browning-			

	Maillard reaction, prevention of non-			
	enzymic browning.			
п		15	CO 1	V1 V2 V2
Π	 Introduction and Constituents of Foods-II 2.1 Lipids: Nomenclature and classification. Emulsions and emulsifiers, rancidity of fats chemistry of fat and oil processing – function and storage of fats. Heat treatment on the nutritive value of oil seeds, nuts and oil-seed meals. Role of MUFA and PUFA in preventing heart diseases. Characterisation of oil: iodine number, RM value, acid number and saponification values–(Only terms) 2.2 Minerals and vitamins: Sources, functions, bioavailability and deficiency of the following minerals (calcium, iron, iodine, fluorine, sodium and potassium (elementary treatment). Vitamins- classification, sources, functions and deficiencies of fat- soluble vitamins–A, D, E and K, water-soluble vitamins–C, thiamin, niacine, riboflavin, B-complex, - B6, Folic acid and B12. Fortification with vitamins and minerals. Effect of cooking on vitamins and minerals-different methods of cooking of vegetables, fruits–dehydrated fruits, canned fruit, canned fruit juices. 	15	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
III	 Food Additives, Modern Foods and Nutrition 3.1 Food additives: Artificial sweeteners– saccharin, cyclamate, aspartame–food flavours – esters, aldehydes and heterocyclic compounds. Antioxidants. Food colours – changes in cooking. Restricted use. Spurious colours. Preservatives – leavening agents. Baking powder–Yeast. Taste enhancers– MSG- vinegar. 3.2 Modern food: Mushroom cultivation and types, spirulina composition. Candy manufacturing. Caramellisation. Fast foods. Instant foods. Dehydrated foods. Oleoresin of spices. Condiments. Milk Products, Heat Processing of Milk, Pasteurization, Cheese, Butter, Ghee and Kova. 3.3 Beverages: Carbonation. Composition of soft drinks. Excessive use leading 	13	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

				1
tetrap	ary bladder stones. Preservation of ak. Nitrogen preservation and packing			
	it juices. Coconut water.			
	ion – calorific value of food stuff– RQ			
	od (Respiratory quotient of food) -			
	metabolic rate - factors influencing			
	, specific dynamic action (SDA) of			
food.				
3.5 Therm	ogenic effect-energy requirements of			
indivi	duals-diet and its components- the			
protei	n requirements – biological value of			
protei	ns, supplementary value of proteins.			
Disea	ses associated with protein			
malnu	trition. Nutritional value of			
carbol	hydrates. – Fibers in the diet, dietary			
sugars	s- nutritional aspects of lipids			
IV Food Adu	ulteration and Hygiene	13	CO 1	K1, K2, K3,
4.1 Adu	lterants: Common adulterants in		CO 2	K4, K5, K6
differe	ent foods-milk and milk products,		CO 3	
vegeta	able oils, and fats, spices and		CO 4	
condi	ments, cereals, pulses, sweetening		CO 5	
agents	s and beverages. Contamination with			
toxic	chemicals- pesticides and			
insect	icides. Principles involved in the			
analys	sis of detection and prevention of food			
adulte	ration.			
4.2 Micro	bial growth: growth curve of bacteria.			
Effect	t of environmental factors on growth			
of m	icroorganisms. pH, water activity,			
oxyge	n availability temperature-beneficial			
effect	of microorganisms. Food borne			
illness	s– bacteria, virus, moulds and			
parasi	tes. (Any two illness each)- Enzyme			
produ	ction from microorganisms.			
Appli	cation of enzymes in food processing.			
	ors affecting Food deterioration:			
metho	ods of preservation and processing.			
Qualit				
standa	ards: PFA, FPO, FDA, drug license,			
WHO				
packin	ng and label requirements, essential			
-	nodities act, consumer protection act.			
AGM	ARK. FSSAI			
V Soaps, D	etergents and Cosmetics	21	CO 1	K1, K2, K3,
5.1 Saj	ponification of oils and fats.		CO 2	K4, K5, K6
Manu	facture of soaps. Formulation of toilet		CO 3	
soaps	Different ingredients used. Their		CO 4	

	functions. Medicated soaps. Herbal soaps.	CO	5
	Mechanism of action of soap. Soft soaps.		
	Shaving soaps and creams. BIS		
	specifications. (Introductory note).		
	5.2 Anionic detergents: Manufacture of LAB		
	(linear alkyl benzene). Sulphonation of		
	LAB- preparation of acid slurry. Different		
	ingredients in the formulation of detergent		
	powders and soaps. Liquid detergents.		
	Foam boosters. AOS (alpha olefin		
	sulphonates). Cationic detergents:		
	examples. Manufacture and applications.		
	Non-ionic detergents: examples.		
	Manufacture of ethylene oxide		
	condensates.		
	5.3 Mechanism of action of detergents.		
	Comparison of soaps and detergents.		
	Biodegradation–environmental effects. ISI		
	specifications/limits.		
	5.4 Shampoos- Role of SLS and SLES.		
	Ingredients. Functions. Different kinds of		
	shampoos– anti-dandruff, anti-lice, herbal,		
	anti hair fall and baby shampoos.		
	5.5 Hair dye. Manufacture of conditioners.		
	Coco betaines or cocodi-ethanolamides		
	5.6 Skin lightening materials: face and skin		
	powders. Ingredients, functions. Different		
	· ·		
	types. Snows and face creams. Chemical ingredients used. Antiperspirants. Sun		
	screen preparations. UV absorbers. Skin		
	bleaching agents. Depilatories. Turmeric		
	and Neem preparations. Vitamin oil.		
	5.7 Nail polishes: nail polish preparation, nail		
	polish removers. Cuticle removers.		
	Lipsticks, rouge, eyebrow pencils.		
	Ingredients and functions –hazards.		
Text Bo		and T 11	
1.	S. Gobala Rao, 1998, Outlines of chemical technol	ogy, 2 nd Edition, A	filliated East West
~	press.		. 1
	Kafaro1995, Wasteless chemical processing, Lates		
3.	W. Sawyer, 2000, Experimental cosmetics, 1 st Edit	-	
4.	Perry Romanowski and Randy Schueller, 2009, Be Edition Allured Books Media USA	eginning Cosmetic (Lnemistry, 3 rd
1	Edition Allured Books Media USA		

- Edition, Allured Books Media, USA
- 5. M. Swaminathan, 1993, Advanced Text Book on Food and Nutrition, Vol. I & II, 2nd Edition, Printing and Publishing Co., Ltd., Bangalore
- 6. N. Norman Potter, 1994, Food Science, 5th Edition, CBS publishers and distributors, New Delhi.

- 7. L.H. Meyer, 1994, Food Chemistry, Latest Edition, CBS publishers and distributors, New Delhi.
- 8. H.K. Chopra and P.S. Panesar, 2010, Food Chemistry, Latest Edition, Narosa Publishing House.
- 9. M. Vimaladevi, 2019, Text Book of Cosmetics, New Edition, CBS publishers and distributors, New Delhi.

Suggested Readings

- 1. K. Bagavathi Sundari, 2006, Applied chemistry,1st Edition, MJP Publishers.
- 2. V.K. Ahluwalia, 2010, Organic chemistry, Narosa Publications house.
- 3. Owen R Fennema, 1996, Food Chemistry, 1st Edition, Marcel Decker Inc, New York.
- 4. B. Srilakshmi,2003, Food Science, 3rd Edition, New age International Pvt. Ltd.
- 5. B. SivaSankar, 2002, Food Processing and Preservation,1st Edition, Prentice–Hall of India Pvt. Ltd. New Delhi.
- 6. S. Ramakrishnan, K.G. Prasannam and R. Rajan, 2001, Textbook of Medical Biochemistry, 2nd Edition, Orient Longman Ltd.
- N. Shakuntala Manay and M. Shadaksharaswamy, 2002, FOODS: Facts and Principles, 2nd Edition, New age International Pvt. Ltd.

Web Resources

- 1. https://www.sciencedirect.com/topics/engineering/cosmetic-product
- 2. https://bis.gov.in/index.php/product-certification/product-specific-guideline/

COs	CO Description	Cognitive Level
CO 1	Describe the basic concepts of food components, food additives, food adulterants and consumer products.	K1, K2
CO 2	Predict and apply the chemistry of food and consumer products.	К3
CO 3	Analyse and outline the advantages of different food processing methods and functions of cosmetic products.	K4
CO 4	Recommend the analytical techniques to quantify food constituents and to detect adulterants.	К5
CO 5	Summarize and validate the effect of various chemical constituents in food and consumer products.	K6

Course Code	UCH 4602				
Course Title	CHEMISTRY OF MATERIALS				
Credits	04				
Hours/Week	06				
Category	Major Elective (ME) - Theory				
Semester	IV				
Regulation	2019				
Course Overv	iew				
	stry of Materials is an interdisciplinary subject, spanning the physics and chemistry er, engineering applications and industrial manufacturing processes.				
	Course spans the subject from its foundations in physics and chemistry to the				
	nical, electrical, magnetic and optical properties of materials, and the design,				
	acture and applications of metals, alloys, ceramics, polymers and composites.				
	course, the students will study the relationships between the structure and properties				
	iterial and how it is made.				
	ourse also helps the students develop new materials and devise processes for				
	icturing them.				
5. Chemis	stry of Materials is vital for developments in the field of nanotechnology, sensors and				
polyme	er materials.				
Course Object	ives				
1. To und	erstand the properties and applications of nanomaterials.				
·	ovide students a fundamental understanding of electrical, magnetic and				
^	superconducting properties of materials.				
	uire knowledge about sensors, requirements, volatile Organic Compounds and				
biosens					
	cribe the techniques and processes involved in polymerization.				
·	lain the importance of industrial polymers and processing techniques.				
Prerequisites	Basic knowledge of materials and their properties				
	J				

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Nanomaterials	18	CO 1	K1, K2, K3,
	1.1 Introduction and types of materials.		CO 2	K4, K5, K6
	Nanomaterials: bottom-up and top-down		CO 3	
	approaches with examples. Physical		CO 4	
	methods-inert gas condensation and arc		CO 5	
	discharge. Chemical methods-sol-gel,			
	solvothermal and hydrothermal methods			
	and chemical vapour deposition. Biological			
	methods-role of bacteria and fungi in			
	nanomaterials synthesis.			

		Carbon nanotubes (CNTs)-synthesis and purification; single and multiwalled- advantages and disadvantages, filling of nanotubes, mechanism of growth, electron structure. Properties of CNTs-physical, transport, and mechanical; applications. Nanoparticles-types; pure metals- gold and silver. Metal Oxides-silica and alumina; synthesis and properties. Characterization of nanostructures-SEM and TEM (principle and instrumentation only).			
II	Eleo	ctrical, Magnetic and Superconducting	14	CO 1	K1, K2, K3,
	mat	rerials		CO 2	K4, K5, K6
	2.1	Conductors: variation of conductivity with		CO 3	
		temperature. Semiconductors-p- and n-		CO 4	
		type, p-n junction; applications in		CO 5	
		transistors, rectifiers and photo-splitting of			
		water. Photovoltaic and photogalvanic			
	2.2	cells. Magnets: classification-diamagnetic,			
	2.2	paramagnetic, antiferromagnetic, ferro-			
		and ferrimagnetic, magnetic susceptibility.			
		Variation with temperature-Curie-Weiss			
		law, Curie- and Neel temperatures.			
		Permanent and temporary magnets,			
		Domain theory.			
	2.3	1			
		effect, Bardeen-Cooper and Schrieffer			
		theory and Cooper pairs; examples of superconducting oxides; applications of			
		superconducting materials			
III	Sen	sors	14	CO 1	K1, K2, K3,
	3.1		11	CO 1 CO 2	K1, K2, K3, K4, K5, K6
		and heat sensitive, temperature,		CO 3	, -, -
		electromagnetic, mechanical and		CO 4	
		electrochemical sensors.		CO 5	
	3.2	Humidity sensors-relative humidity,			
		requirements, miniaturization-capacitive,			
		resistive, hygrometric, gravimetric and			
		optical. Metal oxides-single and doped and			
	33	polymers. Sensing mechanism. Volatile Organic Compounds (VOC)			
	5.5	sensors: sources, health effects, need for			
		detection of VOCs, Metal oxides-single			
		and doped and polymers. Sensing			
		mechanism.			

	24 Discourse definition minist	c		
	3.4 Biosensors: definition, principle of			
	detection, types-optical an			
	electrochemical. Applications- cancer	,		
	point of care testing.			
IV	Polymers	18	CO 1	K1, K2, K3,
	4.1 Introduction-monomers, oligomer	,	CO 2	K4, K5, K6
	polymers and their characteristics. Plastic		CO 3	
	elastomers, fibres, homo- and co-polymer		CO 4	
	Bonding: primary and secondary bon		CO 5	
	forces; cohesive energy. Determination of		000	
	molecular mass: number average molecula			
	mass (M_n) and weight average molecula			
	mass (M _w). Dendrimers – introduction an	1		
	applications.			
	4.2 Polymerization: mechanism and technique			
	chain-growth-cationic, anionic, free			
	radical, Stereo regular polymers; Ziegler			
	Natta polymerization, Step-growth, bull			
	solution, emulsion, suspension, interfacia			
	and gas-phase. Kinetics of polymerization	,		
	polymer degradation and types.			
V	Industrial Polymers and Processin	g 14	CO 1	K1, K2, K3,
	Techniques		CO 2	K4, K5, K6
	5.1 Thermoplastics (synthesis and application		00.2	
	5.1 Thermoplastics (synthesis and application	S	CO 3	
			CO 3 CO 4	
	only): polyethylene, polypropylene	÷,		
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride	·,	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an	, , 1	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic	s, , 1 s	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno	e, , 1 s -	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resim	e, 1 s -	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resin Elastomers (synthesis and application	e, d s - s	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resin Elastomers (synthesis and application only): natural and synthetic rubbers- Buna	e, d s - s -	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resin Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductin	2, - - - - - - - -	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resin Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductin Polymers: polyphenylene, polypyrrole an	2, - - - - - - - -	CO 4	
	only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resin Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductin Polymers: polyphenylene, polypyrrole an polyacetylene.	e, , , s - s - g	CO 4	
	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resin Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductin Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, die 	- - - - - - - -	CO 4	
	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resime Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductinn Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, dia casting; compression, injection, blow 	- - - - - - - -	CO 4	
	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resine Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductinn Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, die casting; compression, injection, blow mouldings; reinforcing; vulcanisation. 	- - - - - - - -	CO 4	
	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resime Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductinn Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, die casting; compression, injection, blow mouldings; reinforcing; vulcanisation. 5.3 Impact of polymers on human health and 	- - - - - - - -	CO 4	
	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastice (synthesis and applications only): pheno formaldehyde and epoxide resime Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductinn Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, dia casting; compression, injection, blow mouldings; reinforcing; vulcanisation. 5.3 Impact of polymers on human health and ecosystems, Biodegradable polymers: 	- - - - - - - -	CO 4	
	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resime Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductinn Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, die casting; compression, injection, blow mouldings; reinforcing; vulcanisation. 5.3 Impact of polymers on human health and ecosystems, Biodegradable polymers: synthesis, recycling and downcycling 	- - - - - - - -	CO 4	
	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastice (synthesis and applications only): pheno formaldehyde and epoxide resime Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductinn Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, dia casting; compression, injection, blow mouldings; reinforcing; vulcanisation. 5.3 Impact of polymers on human health and ecosystems, Biodegradable polymers: 	- - - - - - - -	CO 4	
Text I	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resime Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductinn Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, dia casting; compression, injection, blow mouldings; reinforcing; vulcanisation. 5.3 Impact of polymers on human health and ecosystems, Biodegradable polymers: synthesis, recycling and downcycling processes. 	- - - - - - - -	CO 4	
	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resime Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductinn Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, dia casting; compression, injection, blow mouldings; reinforcing; vulcanisation. 5.3 Impact of polymers on human health and ecosystems, Biodegradable polymers: synthesis, recycling and downcycling processes. 	2, 4 5 5 - 5 5 - 5 1 - V	CO 4 CO 5	
1. 1	 only): polyethylene, polypropylene polyacrylonitrile, polyvinyl chloride polytetrafluoroethylene, nylon an polyester. Thermosetting Plastic (synthesis and applications only): pheno formaldehyde and epoxide resine Elastomers (synthesis and application only): natural and synthetic rubbers- Buna N, Buna-S and neoprene. Conductin Polymers: polyphenylene, polypyrrole an polyacetylene. 5.2 Processing Techniques: calendaring, die casting; compression, injection, blow mouldings; reinforcing; vulcanisation. 5.3 Impact of polymers on human health and ecosystems, Biodegradable polymers: synthesis, recycling and downcycling processes. 	r, , , , , , , , , , , , , , , , , , ,	CO 4 CO 5 2, 1 st Edition	

 Charles P. Poole, Jr., Frank J. Owens, Introduction to nanotechnology, Wiley-India, 2003, 1st Edition.

- 4. T. Pradeep, A Text book of nanoscience and nanotechnology, Tata-McGraw Hill Publications, New Delhi, 2012, 1st Edition.
- 5. Anthony and Andrady, Plastics and environmental sustainability, Wiley, 2015, 1st Edition.
- 6. G.S. Misra, Introductory Polymer Chemistry, New Age International (Pvt) Limited, 1996, 1st Edition.
- 7. V. R. Gowarikar, N. R. Viswanathan, Jayadev Sreedhar, Polymer Science, New Age International, 2019, 3rd Edition.
- 8. M. S. Bhatnagar, A Textbook of Polymer Science, S.Chand, 2012, 1st Edition.

Suggested Readings

- 1. D. F. Shriver, P.W. Atkins, Inorganic chemistry, Oxford University Press, 2004, 3rd Edition.
- 2. H. P. Meyers, Introductory Solid State Physics, Viva Books Private Limited, 1998, 1st Edition.
- 3. A.R. West, Solid State Chemistry and its applications, John-Wiley and sons, 1987, 1st Edition.
- 4. J. George Odian, Principles of Polymerization, Wiley & sons, 2004, 4th Edition.
- J. Fraden, Handbook of Modern Sensors: Physics, Designs, and Applications, Springer Science & Business Media, 2010, 1st Edition.
- Sulabha K. Kulkarni, Nanotechnology Principles and Practices, Capital Publishing Company, New Delhi, 2007, 1st Edition.
- 7. F. W. Billmeyer Jr. Textbook of Polymer Science, John-Wiley and sons, 1984, 3rd Edition.

Web Resources

- 1. https://ec.europa.eu/health/scientific committees/opinions layman/nanomaterials/en/index.htm
- 2. https://www.elprocus.com/what-is-superconductor-types-materials-properties/
- 3. https://www.electronicshub.org/different-types-sensors/
- 4. https://www.hardiepolymers.com/knowledge/polymer-manufacturing-processes/

Course Outcomes	(COs) and	Cognitive L	evel Mapping

COs	CO Description	Cognitive Level
CO 1	To understand and recall the characteristics of nanomaterials, magnets, sensors and polymers.	K1, K2
CO 2	To integrate and assess how the structure of materials are affected by their properties.	К3
CO 3	To analyze and identify new materials for various applications.	K4
CO 4	To explain the importance of nanomaterials, magnets, sensors, polymers, their uses, structures and synthesis	K5
CO 5	To design and develop new materials with improved property for specialized applications	К6

Course Code	UCH 5501			
Course Title	ORGANIC FUNCTIONAL GROUPS-II			
Credits 05				
Hours/Week	05			
Category	Major Core (MC) - Theory			
Semester	V			
Regulation	2019			
Course Overv	iew			
-	c functional groups-II deals with the chemistry of selected organo-oxygen compounds s carbonyl, carboxylic acid and their derivatives.			
	ourse provides the basic concepts involved in organometallics, active methylene unds, aldehydes, ketones, carboxylic acids and its derivatives.			
3. The a				
4. The ot	her important aspect is to give the knowledge of types of organic reactions as well gement reactions with applications.			
5. Nomer	inclature of organic compounds and reaction mechanisms of various interconversions discussed.			
Course Objec	tives			
1. To unc	lerstand the nomenclature and basic concepts of functionalized organic compounds.			
	plain the different methods of preparation and properties of aldehydes, ketones, ylic acids and their derivatives.			
	cuss the mechanism of molecular rearrangement reactions and the applications of			
active	methylene compounds.			
	lyze and appraise the reaction mechanisms involved in preparation and properties of			
Ũ	metallic compounds.			
	ilitate new methods of constructing various organo-oxygen compounds through			
	e reaction mechanisms.			
Prerequisite	Knowledge of nomenclature and basic concepts of organic chemistry			

Prerequisites Knowledge of nomenclature and basic concepts of organic chemistry.

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	 Aldehydes and Ketones 1.1 Nomenclature and classification; Preparation and reactions of carbonyl compounds: reactivity of carbonyl groups, acidity of alpha hydrogen; mechanism of aldol, Perkin, Knoevenagel reactions, benzoin and Claisen condensation; Wittig, Cannizarro and Reformatsky reaction; Michael addition and haloform reactions. 1.2 Mechanisms of reduction with NaBH4, LiAlH4, Wolf-Kishner and MPV reduction. 	13	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	1.3 Photochemical reactions of carbonyl			
	compounds: Norrish type I and II reactions.			
II		13	CO 1	V1 V2 V2
11	Carboxylic Acids and its Derivatives 2.1 Nomenclature and classification of aliphatic	15	CO 1 CO 2	K1, K2, K3, K4, K5, K6
	-		CO 2 CO 3	K4, KJ, KU
	and aromatic carboxylic acids. Acidity – effect of substituents, salt formation;		CO 3 CO 4	
	preparation of acetic acid, halogenated acids,		CO 5	
	cyano acids, lactic and pyruvic acids.			
	2.2 Preparation of dicarboxylic acids: oxalic,			
	malonic, succinic, glutaric, adipic, pimelic			
	and phthalic acids; unsaturated carboxylic			
	acids: acrylic, crotonic and cinnamic acid;			
	reactions: action of heat and stereospecific			
	addition to maleic and fumaric acids.			
	2.3 Preparation and reactions of acid chlorides,			
	acid anhydrides, amides and esters; acid and			
	alkaline hydrolysis of esters, trans-			
	esterification.			
III	Molecular Rearrangements	13	CO 1	K1, K2, K3,
	3.1 Classification: anionotropoic, cationotropic,		CO 2	K4, K5, K6
	free radical, inter and intramolecular.		CO 3	
	3.2 Mechanism of pinacol-pinacolone, semi-		CO 4	
	pinacol-pinacolone rearrangements and		CO 5	
	stereochemical aspects: ring contraction and			
	ring enlargement reactions, Beckmann,			
	benzil-benzilic acid, Hoffmann, Lossen,			
	Curtius and Schmidt rearrangements.			
	3.3 Claisen and para-Claisen, Cope and oxy-			
	Cope, Fries and photo-Fries rearrangements.			
IV	Active Methylene Compounds	13	CO 1	K1, K2, K3,
	4.1 Introduction and tautomerism.		CO 2	K4, K5, K6
	4.2 Preparation, properties and synthetic		CO 3	
	applications of malonic, acetoacetic and		CO 4	
	cyanoacetic ester.		CO 5	
	4.3 Preparation, properties and synthetic			
	applications of diazomethane and diazoacetic			
	ester.			
V	Organometallic Compounds	13	CO 1	K1, K2, K3,
	5.1 Introduction, classification and importance.		CO 2	K4, K5, K6
	Preparation and properties of organometallic		CO 3	. ,
	compounds of Li and Mg.		CO 4	
	5.2 Preparation and properties of organometallic		CO 5	
	compounds of Cu and Zn metals.			
	5.3 Reactions with alkylating agents, carbonyl			
	compounds (by substitution) and coupling			
	reactions.			
		1		

Text Books

- 1. Jonathan Clayden, Nick Greeves and Staurt Warren, Organic Chemistry, Oxford University Press, 2nd edition, 2016.
- 2. M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co. 2020.
- 3. S. N. Sanyal, Reactions, Reagents and Rearrangements, Bharathi Bhavan Publishing. 4th edition, 2019.
- 4. R.T. Morrison & R.N. Boyd Organic Chemistry, Prentice-Hall of India (P) Ltd, 2003, 6th edition.
- 5. Paula Yurkanisand Bruice, Organic Chemistry, Pearson Publishing, 8th edition, 2017.
- 6. R. L. Madhan, Organic Chemistry, Tata Mcgraw Hill Education (P) Ltd, 2013.
- 7. T. W. G. Solomons, Organic Chemistry, Wiley Publishers, Global Edition, 2017.
- 8. G. S. Sodhi Organometallic Chemistry, Ane Books Pvt. Ltd, 2009.

Suggested Readings

- 1. V. K. Ahluwalia, Organic Reaction Mechanism, Ane Books Pvt. Ltd, 2007.
- 2. Marc Lauden, Organic Chemistry, Roberts and company publisher, 5th edition, 2009.
- 3. N. Tewari, Advanced Organic Reaction Mechanism (Problems & Solutions), Books and Allied (P) Ltd, 2nd edition, 2010.
- 4. Jagadamba Singh and L. D. S. Yadav Advanced Organic Chemistry, Pragati Prakashan, 7th edition, 20191.
- 5. Reinhard Bruckner, Advanced Organic Chemistry (Reaction Mechanism) by Academic press, 2008.
- 6. S. Renuga, Name reactions and reagents in organic synthesis, Vishal publishing Co. 2017.
- 7. B. Y. Paula Pearson, Organic Chemistry by Education, Inc. (Singapore), 3rd edition, New Delhi 2002.
- 8. Sehan, N. Ege, Organic Chemistry, Structure and Reactivity, AITBS, New Delhi, 3rdedition, 1998.
- 9. J. B. Hendrickson, D.J. Cram and G. S. Hammond, Organic Chemistry, McGraw-Hill, Kogakusha, Limited, 3rd edition,1970.

Web Resources

- 1. https://sites.google.com/site/chemistryebookscollection02/home/organic-chemistry/organic
- 2. <u>https://www.clutchprep.com/organic-chemistry</u>
- 3. https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro1.htm
- 4. https://bit.ly/3m4M60M
- 5. https://www.masterorganicchemistry.com/organic-1/

COs	CO Description	Cognitive Level
CO 1	To understand and recall the nomenclature and basic concepts of carbonyl, carboxylic acids, active methylene and organometallic compounds.	K1, K2
CO 2	To integrate and assess the different methods of preparation and types of reactions in the chemistry of synthetically important various organic compounds.	К3
CO 3	To explain the applications of different organic functional groups and their derivatives.	K4
CO 4	To analyze and differentiate the type of reaction mechanisms involved in preparation and interconversion of selected organo- oxygen compounds.	K5
CO 5	To construct new routes to achieve the structure of the target molecule through suitable reaction mechanisms.	К6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	UCH 5502			
Course Title	PHASE EQUILIBRIA AND KINETICS			
Credits	05			
Hours/Week	05			
Category	Major Core (MC) – Theory			
Semester	V			
Regulation	2019			
 Course Overview Phase equilibria provide an insight for the design of all kinds of chemical processes involve separations and reactions. This course highlights the relationship between all three phases of a substance in term phase diagram which provides valuable hints to understand the existence of equilibria. This course explains the phase behaviours in the construction of phase diagrams for u binary and ternary systems. This course aims at the utility of several colligative properties in the determination molecular weight of solutes and gives insight on CST and distribution law. Chemical Kinetics deals with the rate, mechanisms of reactions, factors influencing th and its applications. 				
Course Objectives	:			
	stand the Gibbs phase rule and its application in the phase diagram construction.			
2. To know the basic principles involved in separation of liquid mixtures by distillation.				
3. To comprehend the basics of chemical kinetics, determination of order, molecularity, and				
the theories of reaction rates.				
4. To study the rates of complex reactions namely consecutive, opposing, parallel and chai				
reactions with suitable examples.5. To learn about the characteristics of catalysts, acid base and enzyme catalysis.				
Prerequisites	Basic knowledge of Thermodynamics			

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Phase Equilibria	13	CO 1	K1, K2, K3,
	1.1 Phase rule: Concepts of phase, component		CO 2	K4, K5, K6
	and degrees of freedom with examples.		CO 3	
	Gibb's phase rule – derivation. Clapeyron		CO 4	
	and Clausius-Clapeyron equations and their applications to equilibria in phase transitions (solid – liquid, liquid – vapour, solid – vapour)		CO 5	
	1.2 Application of phase rule to one component system-Water and Sulphur.			

	1.2 Deduced phase rule. Two component			[]
	1.3 Reduced phase rule- Two component system: Simple eutectic: Lead-silver			
	system: Simple eutectic: Lead-silver system, Formation of compound with			
	-			
	congruent and incongruent melting points:			
	Ferric chloride – water system.			
	1.4 Three component system: General account			
	of graphical representation of three			
	component systems, acetic acid-			
	chloroform-water system.			
II	Solutions	18	CO 1	K1, K2, K3,
	2.1 Ideal solutions -vapour pressure-		CO 2	K4, K5, K6
	composition diagrams of solutions.		CO 3	
	Raoult's law, positive and negative		CO 4	
	deviations.		CO 5	
	2.2 Principle of fractional distillation - binary			
	systems. Vapour diagram and azeotropic			
	distillation, partially miscible binary			
	systems (Critical Solution Temperature			
	(CST), upper and lower CST). Effect of			
	addition of solute on CST. Steam			
	distillation. Solubility of gases in liquids;			
	Henry's law and relationship with Raoult's			
	law.			
	2.3 Colligative properties -Lowering of vapour			
	pressure: Thermodynamic derivation for			
	elevation of boiling point and depression of			
	freezing point. Relationship between			
	osmotic pressure and vapour pressure, Vant			
	Hoff's theory of dilute solutions. Analogy			
	between solute particles and gas molecules.			
	2.4 Nernst distribution law- Thermodynamic			
	derivation; limitation and its application in			
	association, dissociation and solvation,			
	study of formation of complex ions.			
	Extraction with solvents; efficiency of			
	extraction.			
III	Chemical Kinetics	8	CO 1	K1, K2, K3,
	3.1 Rate, rate law, rate constant, order,		CO 2	K4, K5, K6
	molecularity and activation energy.		CO 2	,,
	Differential form of rate expression and		CO 4	
	reactions involving zero, first, second and		CO 4 CO 5	
	third order reactions.		05	
	3.2 Derivation of integrated rate equations for			
	zero, first and second order reactions (both			
	equal and unequal concentration), Half-			
	life period.			

	2.2 Describe for the state of the			
	3.3 Pseudo-first order reactions- acid catalyzed hydrolysis of ester and inversion of cane sugar. Determination of order by different methods.			
IV	Theories of Reaction rates	13	CO 1	K1, K2, K3,
	4.1 Types of reactions - opposing, parallel, consecutive and thermal chain. Hydrogen- bromine reaction and dissociation of acetaldehyde (only mechanism and no derivation required).		CO 2 CO 3 CO 4 CO 5	K4, K5, K6
	4.2 Factors affecting reactions – nature of reactants, concentration, catalyst, solvent polarity and ionic strength (only qualitative ideas). Arrhenius theory of chemical reaction rates.			
	 4.3 Collision theory of bimolecular and unimolecular reactions -Lindemann hypothesis. Transition state theory – significance of entropy and free energy of activation. 			
V	Catalysis	13	CO 1	K1, K2, K3,
	 5.1 Properties of catalysts, action of catalytic promoters and inhibitors- homogeneous and heterogeneous catalysis – Intermediate compound formation and adsorption theories – acid-base catalysis. 5.2 Kinetics of enzyme catalysis – Michaelis-Menten equation and its verification, turnover number – effect of temperature and pH. Reversible and irreversible enzyme inhibitions, degree of inhibition. 		CO 2 CO 3 CO 4 CO 5	K4, K5, K6
Text Boo				
2. E	 Puri, B. R., Sharma, L.R. Pathania, M.S., Princip Shoban Lal Nagin Chand and Co., Delhi, 2013. Bahl, B.S. Arun, Tuli, G. D., Essentials of Physica td, Multicolour edition, 2009. 	·		
	Keith J. Laidler and John H. Meiser, Physical Publishers, 2 nd Indian edition, 2006.	Chemistry,	Physical	Chemistry, CBS
	Atkins, P.W, J de Paula, Physical Chemistry, Oz Edition, 2006.	xford Univers	sity Press	s, New Delhi, 8 th
E	Dogra, S.K. Dogra, S., Physical Chemistry throug Edition, 2006.		-	
р	Sangaranarayanan MV, Mahadevan V, 2011, Text press, Hyderabad, India.	book of Phys	ical Cher	nistry, University
00	d Readings	1.9.4.		
1. K	Kalidas, C, Sangaranarayanan, M. V., Problems	and Solution	s: Physic	al Chemistry, 1st

edition, Universities Press, 2019

- 2. Rajaram, G. Kuriacose, J.C., Kinetics and Mechanism of chemical Transformations, Macmillan India Ltd., New Delhi, new edition, 2011.
- 3. Kapoor, K L., A Textbook of Physical Chemistry, Macmillan India Ltd, Volume 1 and 3, 2012.
- 4. Farrington Daniels, Chemical Kinetics, BiblioBazaar, Cornell University Press London, 3rd edition, 2011.
- 5. Anderson, A W, Physical Chemistry of Surfaces, Wiley –Interscience, Newyork, 5th Edition, 1990.

Web Resources

1. https://application.wiley-vch.de/books/sample/3527316728_c01.pdf

COs	CO Description	Cognitive Level
CO 1	To define the various terms involved in Phase equilibria and chemical kinetics and to compare ideal and non-ideal solutions.	K1, K2
CO 2	To sketch phase diagrams for unary, binary and ternary systems, solve numerical problems and relate the terms involved in phase equilibria and chemical kinetics.	К3
CO 3	To deduce expressions for phase rule, colligative properties, distribution law and rate constant of reactions and outline the factors influencing the rate of a reaction.	K4
CO 4	To estimate parameters of Phase equilibria and kinetics and validate the parameters using various methods.	К5
CO 5	To construct phase diagrams for various systems, design techniques for the separation of binary solutions and write the mechanism of chemical reactions.	К6

Course Code	UCH 5503			
Course Title	SPECTROSCOPY			
Credits	05			
Hours/Week	05			
Category	Major Core (MC) - Theory			
Semester	V			
Regulation	2019			
Course Overv	iew			
molecu transiti	oscopy deals with the interaction of electromagnetic radiation with atoms and iles. It also talks about quantization of energy, relative population of energy levels, on probability, etc. m of the course is also to highlight the significance of principles, absorption laws,			
Franck elucida	-Condon principle, Woodward-Fieser rule, Hooke's law etc., for structural tions.			
spectro	inciples behind the transitions and instrumentation techniques in various branches of scopy will be dealt with.			
	This course difference between i) IR and Raman spectroscopy ii) NMR and EPR techniques will also be discussed.			
5. This course explains the salient features of mass spectrometry such as fragmentation pat base peak, McLafferty rearrangement, retro Diels-Alder reaction along with the struct				
elucida	elucidation of organic compounds using combined spectral data.			
Course Object	tives:			
	erstand the importance of quantization of energy, relative population of energy levels, on probability, etc.,			
	. To learn the significance of absorption laws and the influence of chromophores and auxochromes.			
	3. To distinguish between IR and Raman spectroscopy and infer their importance in the structural elucidation of molecules.			
	4. To interpret the splitting patterns and coupling parameters in NMR and EPR for structural determination.			
5. To make use of the various spectral data such as vibrational, electronic, Mass, NMR etc., to predict the structures of organic compounds.				
Prerequisites	Basic knowledge of electromagnetic spectrum.			

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Pagia apparents of speatwoscopy	12	CO 1	K1, K2, K3,
1	Basic concepts of spectroscopy1.1 Electromagnetic spectrum and its	12	CO 1 CO 2	K1, K2, K3, K4, K5, K6
	interaction with matter, quantization of		CO 2 CO 3	K4, K5, K0
	energy, electronic, vibrational and		CO 4	
	rotational energy levels, transitions in		CO 4 CO 5	
	atoms and molecules, absorption and		005	
	emission spectra.			
	1.2 Boltzmann distribution (formula only),			
	relative population of translational,			
	vibrational and rotational energy levels at			
	different temperatures, Born-Oppenheimer			
	approximations.			
	1.3 Selection rules, transition probabilities,			
	factors affecting the line width and intensity			
	of the spectral lines, resolution, signal-to-			
	noise ratio.			
II	Electronic spectroscopy	12	CO 1	K1, K2, K3,
	2.1 Absorption laws, Beer -Lambert's law -		CO 2	K4, K5, K6
	verification and its limitations,		CO 3	
	instrumentation of double beam		CO 4	
	spectrophotometer, Franck-Condon		CO 5	
	Principle, types of electronic transitions,			
	chromophores and auxochromes,			
	absorption bands and intensity, factors			
	governing absorption maximum and			
	intensity, solvent effects.			
	2.2 Applications: calculation of λ_{max} of			
	conjugated dienes and α , β -unsaturated			
	ketones using Woodward – Fieser rules.			
	2.3 Atomic absorption spectroscopy and flame			
	photometry – principles and applications			
	(No instrumentation).			
III	Infrared and Raman spectroscopy	15	CO 1	K1, K2, K3,
	3.1 IR spectroscopy: Principle, Hooke's law		CO 2	K4, K5, K6
	and harmonic oscillator, Normal degrees of		CO 3	
	freedom, types of stretching and bending		CO 4	
	vibrations, vibrational frequencies,		CO 5	
	instrumentation, cell sampling techniques,			
	factors affecting the fundamental			
	vibrational frequencies.			
	3.2 Raman spectroscopy: Rayleigh and Raman			
	scattering, stokes and anti-stokes lines,			
	instrumentation – block diagram,			

	 differences between IR and Raman spectroscopy, mutual exclusion principle - CO₂, N₂O, NO₂, H₂O. 3.3 Applications of IR and Raman spectroscopy: Functional group identifications from characteristic IR and Raman bands. 			
IV	 Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopy 4.1 Principle, instrumentation, chemical shift, factors affecting chemical shifts, spin - spin coupling. NMR reference compounds: Tetramethylsilane (TMS) and 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) – advantages and disadvantages. 4.2 Coupling constant, vicinal, geminal, allylic, long-range coupling, factors affecting the coupling constant, deuterium labelling, introduction to ¹³C–NMR spectra, chemical shift, elementary problems involving ¹H and ¹³C NMR. 4.3 Introduction to Electron Paramagnetic Resonance (EPR) spectroscopy: Principle, hyperfine splitting, EPR spectra of methyl and benzene radicals. 	15	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
V	 Mass spectrometry 5.1. Principle, fragmentation pattern, molecular ion peak, base peak, isotopic peak and metastable peak. Nitrogen rule, McLafferty rearrangement, retro-Diels-Alder reaction. 5.2 Instrumentation, determination of molecular formula, mass spectrum of simple organic compounds - hydrocarbons, alcohols, carbonyl compounds and amines. 5.3 Structural elucidation of organic compounds by combined spectral techniques. 	11	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

Text B	Books
1.	Banwell, C. N. 2017, Fundamentals of Molecular Spectroscopy, 4th edition, McGraw-Hill
	Education.
2.	Sharma, Y. R. Chand, S. 2013, Elementary Organic Spectroscopy – Principles and Chemical
	Applications, 5th edition
3.	Sathyanarayana, D. N. 2001, Electronic Absorption Spectroscopy and Related Techniques,
	2nd edition, University Press.
4.	Kalsi, P. S. 2020, Spectroscopy of Organic Compounds, 8th edition, New Age International
	Publishers.
5.	Kemp, W. 2016, Organic Spectroscopy, 3rd edition, Palgrave Macmillan.
6.	Kaur, H. 2019, Spectroscopy, 1st edition, Pragathi Prakashan.
Sugges	sted Readings
1.	Pavia, D. L. Lampman, G. M. Kriz, G. A. Vyvyan, J. R. 2009, Introduction to Spectroscopy,
	5 th edition, Cengage Learning.
2.	Silverstein, R. M. Webster, F. X. Kiemle, D. J. Bryce, D. L. 2014, Spectroscopic
	Identification of Organic Compounds, 8th edition, Wiley.
3.	Sathyanarayana, D. N. 2020, Introduction to Magnetic Resonance Spectroscopy, 3 rd edition,
	Dream Tech Press.
4.	Sathyanarayana, D. N. 2005, Vibrational Spectroscopy- Theory and Applications, New Age
	International Pvt. Ltd.
5.	Jag Mohan, 2020, Organic Spectroscopy-Principles and Applications, 2 nd edition, Narosa
	Publishing agency.
Web F	Resources
1.	https://nptel.ac.in/content/storage2/courses/115101003/downloads/module2/lecture23.pdf
2.	https://nptel.ac.in/content/storage2/courses/104106075/Week4/MODULE%2017.pdf

COs	CO Description	Cognitive Level
CO 1	To recognize the significance of the principles, laws, approximations, etc., to understand the transitions in atoms and molecules.	K1, K2
CO 2	To apply the concepts of various branches of spectroscopy to calculate relevant spectral parameters.	К3
CO 3	To analyse scientifically the various spectra and identify the appropriate structure of chemical compounds.	K4
CO 4	To compare the spectral pattern and evaluate the parameters essential for structural determinations.	К5
CO 5	To integrate the various spectral data such as vibrational, electronic, Mass, NMR etc., to elucidate the structures of organic compounds.	K6

Course Code	UCH 5504					
Course Title	TRANSITION ELEMENTS AND NUCLEAR CHEMISTRY					
Credits	05					
Hours/Week	05					
Category	Major Core (MC) - Theory					
Semester	V					
Regulation	2019					
 Course Overview Transition elements and nuclear chemistry comprises the chemistry of transition elements, inner-transition elements, metallurgy and nuclear chemistry. General overview of the properties of transition elements as well as iron group elements, copper group elements, lanthanides and actinides will be deliberated. The important aspects that will be discussed in the course include the general processes involved in the extraction of Ti, V, Fe and Cr as well as extraction of individual metals. This course illustrates the different types of nuclear reactors, counters, kinetics of nuclear reactions, calculation of the age of earth and dead wooden articles. This course will also examine the properties of iron triad, copper group, lanthanides and actinides, the various processes in the extraction of metals from ores, chemistry of nucleus and different types of nuclear reactions. 						
Course Objectives						
	o understand and explain the properties and applications of transition elements. o describe the techniques and processes involved in the extraction of metals.					
	To discuss the characteristics of inner-transition elements and their applications.					
	To predict the nature of a nucleus and nuclear reactions.					
<u>^</u>	*					

Prerequisites	Basic knowledge of Chemistry.
---------------	-------------------------------

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Transition Elements	13	CO 1	K1, K2, K3,
	1.1 General characteristics of first row d-		CO 2	K4, K5, K6
	block elements: -Introduction, atomic		CO 3	
	radii, ionic radii, atomic volumes,		CO 4	
	density, metallic character, melting and		CO 5	
	boiling points ionization energy,			
	reactivity, oxidation states, complex			
	formation, reducing properties, colour			
	and magnetic properties, catalytic			
	properties, variable oxidation states,			
	lower oxidation states and stabilization.			
	Differences between the first and the			
	other rows of <i>d</i> -block elements.			

	 1.2 Iron triad - Group discussion, horizontal comparison with Fe, Co, Ni groups, occurrence and commercial forms of iron, manufacture and properties of cast iron – Steel: classification, properties and heat treatments of steel (iron passivity, corrosion). compounds of iron- potassium ferrocyanide and potassium ferricyanide, sodium nitroprusside-uses of compounds of iron in blue prints, test for iron. 1.3 Copper group: Similarities and gradation in Cu, Ag, Au. Compounds of Cu, halides of Ag- photography, silvering of mirrors. Compounds of Gold, electroplating of matala 			
	metals.	10		
II	Metallurgy	13	CO 1	K1, K2, K3,
	2.1 Occurrence of elements in nature- minerals		CO 2	K4, K5, K6
	and ores, types of ores.2.2 General principles of extraction of metal –		CO 3 CO 4	
	metallurgy: pulverisation, concentration of		CO 4 CO 5	
	ores- electromagnetic, hydraulic leaching		005	
	and froth flotation process; calcination and			
	roasting, reduction-thermite welding,			
	alumino thermic, smelting process,			
	electrolytic reduction, purification of			
	metals-zone refining, van-Arkel, Mac-			
	Arther forest cyanide process. Mineral			
	beneficiation.			
	2.3 Factors influencing the choice of extraction			
	process, thermal decomposition methods; displacement of metal; high temperature			
	chemical reduction methods-			
	thermodynamics of reduction processes-			
	Ellingham diagram. Reduction by carbon			
	and metal. Self-reduction, reduction of			
	oxides with hydrogen; electrolytic			
	reduction-in aqueous solution, in non-			
	aqueous solvents, in fused melts;			
	metallurgy of Ti, V, Fe, and Cr.			
III	Inner-Transition Elements	13	CO 1	K1, K2, K3,
	3.1 Lanthanides: lanthanide series, position in the periodic table, abundance and natural		CO 2	K4, K5, K6
	the periodic table, abundance and natural isotopes, lanthanide contraction, similarity		CO 3 CO 4	
	in properties, occurrence, oxidation states,		CO 4 CO 5	
	chemical properties of lanthanide (III)			
	cations, electronic spectra. Separation of			
	lanthanides: solvent extraction, ion			

	 exchange, chemical properties of Ln (III) metal ions. 3.2 Actinides: actinide series, abundance and natural isotopes, occurrence, separation of actinides, oxidation states, general properties, the later actinide elements. 3.3 Uranium-occurrence, metallurgy; chemical properties of hydrides, oxides, and halides. 			
IV	 Nuclear Chemistry 4.1 Chemistry of nucleus: types of nucleons. Nature of subatomic particles. Isotopes, isobars, isotones and nuclear isomers. isotopic mass-meson exchange theory of the origin of nuclear forces-density of nucleus-radioactive elements. Nuclear stability: n/p ratio, packing fraction, mass defect, binding energy and calculations. Nuclear model: shell (magic numbers) and liquid drop model. 4.2 Natural and induced radioactivity: radioactive decay α-, β- and γ-decays, Soddy-Fajans and Russel Group displacement law. Neutron and positron emission, electron capture; Geiger-Nuttall rule, radioactive displacement law, natural and artificial radioactivity. unit of radioactivity. Radioactive series and calculation of number of α, and β particles. 4.3 Disintegration constant, activity; half-life period, average life period (tavg); radioactive equilibrium; law of successive disintegration; activity of radioactive 	13	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
	substances and calculations. Measurement of radioactivity: ionization chamber, Geiger and scintillation counters, pulse radiolysis.			
V	Nuclear Reactions	13	CO 1	K1, K2, K3,
	 5.1 Nuclear reactions: types, nuclear cross section, spallation, nuclear fission and fusion. Theory of fission-chain reaction, critical mass; nuclear reactors-fast breeder reactor, fuels used in nuclear reactors-fissile, fertile separation of isotopes, moderators, coolants. Nuclear reactors in India. Atom bomb-principle. 5.2 Stellar energy, carbon-nitrogen and proton- 		CO 2 CO 3 CO 4 CO 5	K4, K5, K6

r					
	proton cycles. Hydrogen bomb-principle.				
	5.3 Applications: energy tapping, dating of				
	objects, neutron activation analysis,				
	isotopic labelling studies. Nuclear				
	medicine- ^{99m} Tc radiopharmaceuticals-				
	isotopes used in non-invasive imaging				
	techniques.				
Text B	ooks				
1.	Satya Prakash, G.D. Tuli, S.K. Basu, R.D. Madan, Advanced Inorganic Chemistry, S. Chand				
	& company, New Delhi, 2000, 5 th edn.				
2.	Puri, Sharma and Kalia, Principles of Inorganic Chemistry, Vishal Publicating co. 2016,				
	5 th edn.				
3.	J.D.Lee, Concise Inorganic Chemistry, Blackwell Science Ltd, 2005, 5thedn.				
4.	F.A. Cotton, G. Wilkinson, C. Murillo, M. Bochman, Advanced Inorganic Chemistry, John				
	Wiley, New York, 2006, 6 th edn.				
5.	H.J. Arnikar, Essentials of Nuclear Chemistry, New Age International, New Delhi, 2007,				
	4 th edn.				
Sugges	ted Readings				
1.	M. L.Tobe, J.Burgess, Inorganic Reaction Mechanisms, Addison Wesley Longman, 1999.				
2.	F.A. Cotton, G.Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic Chemistry,				
	John Wiley, 1999, 6 th edn.				
3.	D. F.Shriver, P.W Atkins, C.H. Langford, Inorganic Chemistry, Oxford University press,				
	2000, 3 rd edn.				
4.	B.R. Puri, L.R. Sharma, K.C. Kalia & Geetanjli Kaushal, S & P block elements, Transition				
	Metals & Coordination Chemistry, Vishal Publishing Co. 2020, 1 st edn.				
5.	R. Gopalan, Elements of Nuclear Chemistry, S.Chand (G/L) & Company Ltd, 1999.				
Web R	esources				
1.	https://archive.org/details/atextbookinorga03newtgoog				
2.	https://chemistry.com.pk/books/free-download-chemistry-dictionary/				

COs	CO Description	Cognitive Level
CO 1	To understand and recall the characteristics of transition and inner transition elements and nuclear stability.	K1, K2
CO 2	To Illustrate the different processes employed during the extraction of metals and their applications.	К3
CO 3	To analyze and differentiate the transition, inner-transition and radioactive elements based on their nature, occurrences and properties.	K4
CO 4	To explain the importance of calculating $t_{1/2}$ and its applications in determining age of earth.	К5
CO 5	To construct a table for explaining the properties of transition and inner transition elements and propose possible radioactive isotopes for nuclear reactions.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Co	de	UCH 5505			
Course Title		GRAVIMETRIC ANALYSIS AND ORGANIC PREPARATIONS			
Credits		04			
Hours/Wee	ek	04			
Category		Major Core (MC) - Practical			
Semester		V			
Regulation	1	2019			
Course Ov	erview				
1. The	e aim o	f the course is to impart the Basic knowledge of the gravimetric analysis and the			
pre	paratio	n of organic compounds.			
2. Thi	is cours	se includes skill development to estimate the ions from their corresponding salt			
sol	solutions accurately.				
3. Thi	This course enables to determine suitable precipitating agents and pH of the medium for the				
determination of the analyte.					
4. Thi	This covers the theoretical concepts for the computation of gravimetric factor.				
5. Thi	5. This demonstrates the preparation of organic compounds and the techniques related with				
crystallisation.					
Course Ob	jective	s			
1. To	1. To quantify the particular ion, present in the given solutions accurately.				
2. То	2. To get acquainted with the experimental procedure of gravimetric analysis.				
3. To	To acquire the skills to perform gravimetric estimation precisely.				
	4. To apply the knowledge of quantitative analysis in determining the amount of the analyte				
present in the given solution.					
5. To learn the methods of different preparation of organic compounds.					
Prerequisites		Basic knowledge of chemistry.			

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
	 A. Gravimetric Analysis 1. Estimation of sulphate as barium sulphate. 2. Estimation of barium as barium chromate. 3. Estimation of copper as copper thiocyanate. 4. Estimation of nickel as nickel dimethylglyoxime. 5. Estimation of lead as lead chromate. 6. Estimation of magnesium as magnesium pyrophosphate. 7. Estimation of calcium as calcium oxalate. 8. Estimation of lead as lead sulphate. 9. Estimation of copper as copper sulphide in brass. 	40	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

II	B. Organic Preparations	12	CO 1	K1, K2, K3,
	1. Preparation of benzoic acid from		CO 2	K4, K5, K6
	benzaldehyde		CO 3	
	2. Preparation of p-bromoacetanilide from		CO 4	
	acetanilide		CO 5	
	3. Preparation of picric acid from phenol			
	4. Preparation of salicylic acid from methyl salicylate			
	5. Preparation of benzanilide from aniline			
	Preparation of p-nitroacetanilide from acetanilide			

Text Books

- 1. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part III), S. Viswanathan Co. Pvt. (1996)
- 2. N.S. Gnanapragasam, G. Ramamurthy, Organic Chemistry-Lab manual, S. Viswanathan Co. Pvt. New edn. (2013)
- 3. V.K. Ahluwalia, College Practical Chemistry, University press, 1st edn. (2005)

Suggested Readings

- 1. B.A. Furniss, A.J. Hanna Ford, P.W.G. Smith, A.R. TatChell, Vogel's Textbook of practical organic chemistry, ELBS/Longman England, 5th edn. (1989)
- 2. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denny, Vogel's textbook of quantitative chemical analysis, Longman Scientific & Technical, 5th edn. (1989)

Web Resources

1. <u>https://bit.ly/3BWrVYg</u>

COs	CO Description	Cognitive Level
CO 1	To understand and recall the basic principles of gravimetric analysis and organic compound preparations	K1, K2
CO 2	To predict the role of various precipitating agents.	K3
CO 3	To determine the mass of the analyte and to analyse the accuracy of analysis.	K4
CO 4	To interpret a suitable method for the preparation of organic compounds.	К5
CO 5	To propose a suitable method for recrystallization.	K6

Course Code	UCH 5601
Course Title	BIOCHEMISTRY AND NATURAL PRODUCTS
Credits	06
Hours/Week	06
Category	Major Elective (ME) - Theory
Semester	V
Regulation	2019
natural pro 2. This cours lipids and 3. The aim o and medic 4. The other biomolecu 5. This cours	ect deals with the chemistry of selected biologically important biomolecules and
 To explain lipids, nuc To articula To elucida 	he basic biological concepts of biomolecules and natural products. In various methods of preparations and functions of amino acids, proteins, enzymes, eleic acids and carbohydrates. The functions of alkaloids, terpenoids and anthocyanins. The the structure determination of biomolecules and natural products. The structure of new alkaloids and terpenoids from different methods.
Prerequisites	Basic concepts of organic chemistry.

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Amino Acids and Proteins	13	CO 1	K1, K2, K3,
	1.1 Amino acids - Introduction, classification:		CO 2	K4, K5, K6
	natural, essential and non-essential amino		CO 3	
	acids, preparation of α -amino acids by		CO 4	
	Gabriel's phthalimide and Strecker's		CO 5	
	synthesis; resolution of DL-amino acids.			
	1.2 Physical (zwitterion and isoelectric point) and			
	chemical properties; structural relationship of			
	amino acids to peptides and proteins;			
	synthesis of peptides by carbobenzoxy,			
	Sheehan and Merrifield methods.			
	1.3 Proteins - Introduction, classification – fibrous			
	and globular, classification based on			
	composition (simple and conjugated), general			
	properties-hydrolysis, colloidal and			
	amphoteric character, denaturation and			
	renaturation, tests for proteins and amino			
	acids by Biuret, Ninhydrin and Millon's			
	reagents; determination of structure of			
	proteins - C- and N-terminal residue analysis			
	by Sanger's and Edman's method; primary,			
	secondary and tertiary structure of proteins.	10	GO 1	
II	Enzymes and Lipids	13	CO 1	K1, K2, K3,
	2.1 Enzymes – Introduction, nomenclature and		CO 2	K4, K5, K6
	classification, salient characteristics,		CO 3	
	specificity, mode of enzyme action – Lock		CO 4	
	and Key and induced fit models, factors		CO 5	
	influencing enzyme action.			
	2.2 Coenzymes, cofactors, prosthetic groups of			
	enzymes (Definitions only). mechanism of			
	inhibition (competitive, non- and			
	uncompetitive, allosteric), kinetics of enzyme			
	reaction, isoenzymes and applications.			
	2.3 Lipids – Introduction, biological functions,			
	classification- simple, sphingolipids,			
	glycolipids, triglycerides, common fatty acids			
	present in fats and oils, extraction and refining			
	of oils, physical and chemical properties –			
	hydrolysis, hydrogenation, hydrogenolysis,			
	trans-esterification, rancidity and			
	autoxidation, prevention of rancidity;			
	identification of fats and oils – acid value,			
	iodine value, Polenske number, Reichert-			

	Meissl number; uses of fats and oils;			
	biosynthesis of fatty acids, metabolism -			
	oxidation of glycerol – β -oxidation of fatty			
	acids.			
III	Carbohydrates and Nucleic acids	13	CO 1	K1, K2, K3,
	3.1 Carbohydrates - classification – reducing and	-	CO 2	K4, K5, K6
	non-reducing sugars, ring structure of $D(+)$		CO 3	,,
	glucose, anomers, mutarotation and its		CO 4	
	mechanism, Haworth projection formulae to		CO 5	
	represent α - and β -D(+) glucose and chair		005	
	conformation, epimer and epimerization.			
	3.2 Metabolism: Glycolysis and its reversal-TCA			
	cycle.			
	3.3 Nucleic acids – Introduction, purine and			
	pyrimidine bases, structure of nucleosides,			
	nucleotides and polynucleotides, difference			
	between DNA and RNA. RNA-types and			
	functions, DNA replication, genetic code and			
	biosynthesis of proteins and mutation.			
IV	Alkaloids and Terpenoids	13	CO 1	K1, K2, K3,
	4.1 Alkaloids - Introduction, classification,		CO 2	K4, K5, K6
	occurrence, general properties, isolation and		CO 3	
	tests for alkaloids; general methods of		CO 4	
	structure determination by chemical methods,		CO 5	
	structural elucidation and synthesis of coniine,			
	piperine, nicotine and papaverine.			
	4.2 Terpenoids - Introduction, special isoprene			
	rule, classification and isolation, general			
	methods of structure determination by			
	chemical methods, structural elucidation and			
	synthesis of citral, menthol, geraniol,			
	camphor, β -carotene and vitamin-A.			
V	Anthocyanins and Flavones	13	CO 1	K1, K2, K3,
	5.1 Anthocyanins - introduction, biological		CO 2	K4, K5, K6
	functions, colour and constitution, structure		CO 3	
	determination of anthocyanidins, general		CO 4	
	methods of synthesis.		CO 5	
	5.2 Structural elucidation of cyanidin chloride,			
	pelargonidin chloride, delphinidin chloride,			
	peonidin chloride, malvidin chloride and			
	hirsutidin chloride.			
	5.3 Flavones - Introduction, biological functions,			
	structural elucidation of flavones, flavonol,			
	isoflavone, depsides and tannins.			
	isonavone, depsides and taninis.			

Text Books

- 1. G.P. Talwar, L.M. Srivatsava and K.D. Moudgil, Textbook of Biochemistry and Human Biology, Prentice-Hall of India Limited, New Delhi 2003.
- 2. J.L. Jain, Biochemistry, S. Chand and Sons, New Delhi 2004.
- 3. M. K. Jain and S. C. Sharma, Modern Organic chemistry, Vishal publishing Co. 2014, 4th edn.
- 4. A. Lehninger, D. L. Nelson, M. Cox and M. M. Cox, Principles of Biochemistry, MPS Publishers, New York, 2009.
- 5. A.V.S.S. Rama Rao, Text Book of Biochemistry, U B S Publishers, 2008, 9th edn.
- 6. Gurdeep R. Chatwal, Chemistry of Natural products, Himalaya publishing House Pvt. Ltd, Mumbai, 2018, Vol I & II.
- 7. O.P. Agarwal, Chemistry of Natural products, Goel publishing Co, New Delhi 2001, Vol I & II.
- 8. U. Satyanarayana and U. Chakrapani, Biochemistry, Elsevier, 2019, 5th edn.

Suggested Readings

- 1. T. Palmer and P. Bonner, Enzymes: Biochemistry, Biotechnology, Clinical Chemistry, First East West Press Pvt Ltd., New Delhi 2008, 2th edn.
- 2. J.L. Tymoczko and L. Stryer J.M WH-Freeman and Co, Biochemistry, Herg, 2002, 5th edn.
- 3. Keshav Trehan, Biochemistry, Wiley Eastern Ltd, 1987.
- 4. E.J. Wood and W.R. Pickering, Introducing Biochemistry, ELBS, 1984.
- 5. I. L. Finar, Stereochemistry and the chemistry of natural products, The English language book society and Longman group limited, 1970, 5th edn.
- 6. N.Tewari, Advanced organic chemistry (Organic synthesis, Heterocycles and biomolecules) Books and Allied (p) Ltd. 2015.

Web Resources

- 1. <u>https://microbenotes.com/category/biochemistry/</u>
- 2. https://www.masterorganicchemistry.com/organic-1/
- 3. <u>https://www.organic-chemistry.org/</u>
- 4. https://www.chemistryworld.com/organic-chemistry/211.subject

COs	CO Description	Cognitive Level
CO 1	To understand the basic concepts of biomolecules, alkaloids and terpenoids.	K1, K2
CO 2	To integrate and assess the different methods of preparation structurally different biomolecules and natural products.	K3
CO 3	To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.	K 4
CO 4	To analyze and differentiate the structure determination of biomolecules and natural products.	К5
CO 5	To construct the structure of new alkaloids and terpenoids from different methods	К6

Cours	e Code	UCH 5602	
Course Title		MEDICINAL AND PHARMACEUTICAL CHEMISTRY	
Credits		06	
Hours	/Week	06	
Catego	ory	Major Elective (ME) – Theory	
Semes	ter	V	
Regula	ation	2019	
Cours	e Overview		
1.	Medicinal a	and pharmaceutical chemistry deals with the topics, theories, testing chemical	
	action, new	v drug design and various parameters.	
2.	The aim of	the course is to give the basic information about new concepts of drug design.	
3.	This paper	clearly explains the chemical action of various common drugs used in daily	
	life.		
4.	This paper	also examines the concepts, theories and various steps involved in the new	
	drug desigr		
5.	This paper	explains various parameters involved in the new drug design.	
Cours	e Objectives		
Cours	1. To understand the basic concepts of medicinal and pharmaceutical chemistry.		
	To understa	and the basic concepts of medicinal and pharmaceutical chemistry.	
		the knowledge about the theories and testing of drugs.	
1.	To acquire		
1. 2.	To acquire To explain	the knowledge about the theories and testing of drugs.	

Prerequisites	Basic knowledge of medicinal and pharmaceutical chemistry

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Clinical Hygiene and Biochemical Analysis	15	CO 1	K1, K2, K3,
	1.1 Definition of health. WHO guidelines.		CO 2	K4, K5, K6
	1.2 Sterilization of surgical instruments.		CO 3	
	Disinfectants, antiseptics, sanitation.		CO 4	
	Treatment for specific poisons- acids,		CO 5	
	alkalis, arsenic and mercury compounds.			
	1.3 Body fluid: blood volume, blood pH,			
	blood groups, coagulation of blood.			
	Plasma lipoproteins. Blood pressure.			
	Arteriosclerosis, diseases affecting red			
	cells: Hyperchromic and hypochromic			
	anemia. Blood transfusion. Coagulation,			
	biochemical analysis of urine, serum and			
	fecal matter, Methods of determination of			
	blood sugar and diabetes.			

II	Introduction to Pharmaceutical Chemistry	16	CO 1	K1, K2, K3,
	2.1 Terminologies - molecular		CO 2	K4, K5, K6
	pharmacology pharmacodynamics,		CO 3	, ,
	pharmacokinetics, pharmacognosy,		CO 4	
	pharmacophore, metabolites,		CO 5	
	antimetabolites, actinomycetes, virus,			
	bacteria and fungi. Drugs: names			
	(chemical proprietary, non-			
	proprietary, trivial and trade), code			
	number, dosage and storage.			
	2.2 Definition of biological, chemical and			
	immunological assays. Metabolism of			
	8			
	pharmacological activity.			
	2.3 Physiological effects of hydroxyl and			
	carboxylic acid functional groups in			
	drugs: testing of potential drugs and			
	their side effect- ethical clearance and			
	clinical trials.	1.5	GO 1	
III	Common Drugs	16	CO 1	K1, K2, K3,
	3.1 Testing of drugs: biological variation,		CO 2	K4, K5, K6
	screening and toxicity, therapeutic index		CO 3	
	and use of pharmacopoeia; Biological		CO 4	
	functions of drugs- quinine, reserpine,		CO 5	
	only structure for atopside and			
	d–tubocurarine.			
	3.2 Types of drugs and their modes of			
	action: Antidepressant drugs sedatives			
	and hypnotics: Phenobarbital &			
	Paramethadione. Anticonvulsant drugs:			
	sodium valproate, hydantoins. Narcotic			
	analgesics: only morphine compounds.			
	Antipyretic analgesics: acetylsalicyclic			
	acid, p–aminophenol derivatives.			
	Muscle relaxants. Type 1: Acting at			
	neuromuscular junction: d– tubocurarine			
	chloride. Type 2: Acting at spinal cord:			
	glycerylguaiacolate, diazepam.			
	3.3 Antibiotics: penicillin, streptomycin,			
	tetracycline, chloramphenicol.			
	Cardiovascular drugs: nitrates,			
	betablockers: propranolol and atenolol			
	and calcium channel blockers. Stent			
IV	New Drugs and Drug Action	16	CO 1	K1, K2, K3,
	4.1 Genesis of new drugs: serendipity,		CO 2	K4, K5, K6
	random screening, extraction of active		CO 3	
	principles from natural sources		CO 4	

		1	1	
	(Hesperdin from Orange Peel),		CO 5	
	molecular modification of known drugs			
	(morphine), synthesis of soft drugs like			
	diazepam and barbitol, drug latentiation.			
	4.2 Compounds of medicinal interest:			
	Structure, structural modifications,			
	mechanism of action and therapeutic			
	uses of taxanes and camptothecin.			
	-			
	4.3 Theoretical aspects of drug action:			
	stereochemical aspects of drugs.			
	Structure activity relationship of			
	penicillin and streptomycin.			
V	Drug Discovery and Drug Design	15	CO 1	K1, K2, K3,
•	• • •	15	CO 1 CO 2	K4, K5, K6
	5.1 Modern methods of drug discovery			K 4, K 3, K 0
	target validation: Introduction to		CO 3	
	discovery of lead molecule, rational drug		CO 4	
	discovery models. Target structure,		CO 5	
	active site identification and methods of			
	validation.			
	5.2 Rational Drug Design: QSAR and QSPR			
	(Introduction only). QSAR parameters -			
	lipophilicity(polarisability, electronic			
	and steric parameters).Quantitative			
	models. Hansch analysis, Free Wilson			
	analysis and their relationships, linear			
	relationships and applications of Hansch			
	and Free Wilson analysis.			
	5.3 Introduction to Computer Aided Drug			
	Design (CADD) and molecular			
	-			
	modelling.			
Text B				
1.	K. Bagavati Sundari, Applied Chemistry, MJP Pu	blishers, Chen	nai, 2008	, 1 st edn.
2.	B.L. Oser, Hawk's physiological chemistry, Tata	-McGraw - Hil	ll Publish	ing Co. Ltd, 1965,
	14 th edn.			
3.	H. Singh and V.K. Kapoor, Medicinal and Pharm	naceutical Che	mistry V	allahh Prakashan
5.			misuy, v	unaon i rakasnan,
	Delhi, 1996, 14 th edn.			
4.	Graham L Patrick, An Introduction to Medicinal G	Chemistry, Oxt	tord Univ	ersity Press, 2017,
	5 th edn.			
5.	Ilango, Valentina, Text Book of Medicinal Chen	nistry volume-	I & II. K	Keerthi Publishers.
	2017, 1 st edn.	J	, -	······································
C		antial Oncert	Chamin	A Doorcon Frank
6.	Paula Yurkanis Bruice, K.J. Rajendra Prasad. Ess	ential Organic	Chemistr	y, Pearson, Pourth
	Impression, 2012 New Delhi. New edn.			
7.	Wilson and Gisvold's Textbook of Organic Medi	cinal and Phar	maceutica	al Chemistry, John
	M. Beale Jr and John M. Block, Wolters Kluwer,	2011. 12 th edn		-
8.	P. Parimoo, A Textbook of Medical Chemistry, N	-		are 1005
	•			
9.	S. Ramakrishnan, K. G. Prasannan and R. Rajar	i, Texidook Ol	wieutcal	Diochemistry,
	Hyderabad: Orient Longman. 3 rd edition, 2001.			

Suggested Readings

- 1. Jayashree Ghosh, A text book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999, 1999 edn.
- 2. O. LeRoy, Natural and synthetic organic medicinal compounds, Ealemi, 1976.
- 3. S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New Delhi, 1993, New edn.
- 4. D. J. Abraham, D. P. Rotella, Burger's Medicinal Chemistry, Drug Discovery and Development, Wiley Publications, New York, 2010, 7th edn., Vol- 8.

Web Resources

- 1. https://www.ncbi.nlm.nih.gov/books/NBK482447/
- 2. <u>https://training.seer.cancer.gov/treatment/chemotherapy/types.html</u>
- 3. https://www.classcentral.com/course/swayam-medicinal-chemistry-12908
- 4. https://www.edx.org/course/medicinal-chemistry-the-molecular-basis-of-drug-di
- 5. https://www.pharmpress.com/product/9780857110831/fasttrack-chemistry-of-drugs
- 6. <u>https://bit.ly/3aFuxy4</u>

Cos	CO Description	Cognitive Level
CO 1	To understand the safe handling of chemicals used in medicine.	K1, K2
CO 2	To apply the theories of drug action and biomolecules.	К3
CO 3	To recognize the basis of physiological functions of common drugs.	K4
CO 4	To identify the types of common drugs.	К5
CO 5	To classify drugs and to design drugs.	K6

Course Code	UCH 6501			
Course Title				
Course Title	COORDINATION CHEMISTRY			
Credits	06			
Hours/Week	06			
Category	Major Core (MC) - Theory			
Semester	VI			
Regulation	2019			
Course Overview	•			
	on Chemistry comprises the chemistry of coordination, organometallic s and bioinorganic chemistry.			
^	of the course is to impart the basic knowledge about the coordination and			
organomet	allic compounds and overview the applications of bioinorganic chemistry.			
3. The different	ent modules of the course will examine the nomenclature, theories and reaction			
mechanisn	n of the coordination and organometallic compounds, and their applications in			
biosystems.				
	rse, the biological role of transition metal ions, role of organometallic compounds			
•	s and synthesis of macrocyclic coordination compounds will also be examined.			
	e also focuses to study the following concepts: isomerism, effect of ligands on the			
e .	of the metal ion, electron and energy transfer reactions, popular organometallic			
	sed in the manufacture of chemicals and contrast agents in MRI.			
Course Objective				
1. To underst compound	and and explain nomenclature and properties of coordination and organometallic			
 To predict and ascertain the magnetic properties of coordination compounds. 				
 To predict and ascertain the magnetic properties of coordination compounds. To describe the mechanisms of substitution and electron transfer reactions. 				
	uct the qualitative molecular orbital diagram for σ -bonding in octahedral			
geometry.				
5. To formu	late and explain the biological role of metal ions in enzymes and			
radiopharm	naceuticals and formulate methods for synthesizing coordination compounds.			
Prerequisites	Basic knowledge of bonding of covalent and ionic compounds			

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Introduction	16	CO 1	K1, K2, K3,
	1.1 Introduction: ligands-mono-, bi-, and		CO 2	K4, K5, K6
	polydentate ligands; terminology,		CO 3	
	nomenclature of mono- and dinuclear		CO 4	
	complexes; thermodynamics of formation		CO 5	
	of coordination compounds.			
	1.2 Isomerism: linkage-, ionization-,			
	hydrate-, coordination-, coordination			

position isomerism, geometrical- (cis/trans and fac/mer), and optical isomerism.	
isomerism	
1.3 Theories: Werner's and Sidgwick - EAN	
and stability, formation of metal-metal	
bond in dimers, limitations; valence bond	
theory-hybridization, formation of	
tetrahedral and octahedral complexes,	
A	
geometry -magnetic property relationship,	
drawbacks of VBT.	
II Theory of Coordination Compounds 16 CO 1 K1, K	2, K3,
2.1 Crystal field theory: assumptions, crystal CO 2 K4, K	5, K6
field splitting in octahedral, tetragonally CO 3	
distorted octahedral, tetrahedral and CO 4	
square planar geometries, qualitative CO 5	
crystal field splitting diagrams, high- and	
low-spin complexes, CFSP and factors	
affecting, computation of CFSE.	
Evidences of crystal field splitting,	
spectrochemical series.	
2.2 Jahn-Teller theorem: static and	
dynamic, distortions in octahedral	
complexes.	
2.3 Covalency in transition metal	
complexes: evidence, intensity of d-d	
transitions, nephelauxetic effect, adjusted	
crystal field theory. MO Theory: Metal	
orbitals and LGOs suitable for σ - and π -	
bonding in octahedral geometry,	
construction of qualitative MO energy	
level diagram for σ - bonding in octahedral	
geometry. R-S coupling – derivation of	
ground state term symbol.	
III Reaction Mechanisms in Coordination 16 CO 1 K1, K	2, K3,
compounds CO 2 K4, K	5, K6
3.1 Substitution reactions in octahedral CO 3	
complexes: dissociative, associative and CO 4	
interchange mechanisms. CO 5	
Thermodynamic stability of complexes,	
spectrophotometric determination of	
stability constant.	
3.2 Kinetic inertness and lability. Substitution	
reactions in square planar complexes:	
dissociative and associative mechanisms-	
cis- and trans-effects in the synthesis of	
square planar and octahedral complexes.	
Electron transfer reactions: inner and	

	outer sphere, complementary and non-			
	complementary electron transfer			
	reactions.			
	3.3 Metal template synthesis - metal			
	phthalocyanins and Schiff bases. Vaska's			
	complexes: structure, reactivity,			
	oxidative addition and reductive			
	elimination reactions.			
IV	Organometallic Compounds and Catalysis	15	CO 1	K1, K2, K3,
	4.1 Nomenclature, 16- and 18-electron rule.		CO 2	K4, K5, K6
	Structure and bonding in transition metal		CO 3	
	carbonyls: polynuclear carbonyls,		CO 4	
	bridging and terminal carbonyls		CO 5	
	4.2 Transition metal alkyls, carbenes and			
	carbynes. Metallocenes – synthesis,			
	properties, and structure of ferrocene.			
	4.3 Wilkinson's catalyst-alkene hydrogenation,			
	hydroformylation, Monsanto acetic acid			
	process, Ziegler-Natta catalyst -			
	polymerization of olefins.		GO 1	
V	Inorganic Biochemistry	15	CO 1	K1, K2, K3,
	5.1 Biological roles of transition metal ions		CO 2	K4, K5, K6
	containing proteins and enzymes:		CO 3	
	apoenzymes and coenzymes; heme		CO 4	
	proteins-hemoglobin and myoglobin-		CO 5	
	general structures and functions. 5.2 Biological role of cytochromes,			
	carboxypeptidase A, superoxide dismutase; in vivo and in vitro nitrogen			
	fixation.			
	5.3 Inorganic medicinal chemistry:			
	radiopharmaceuticals, chelate therapy			
	and contrast agents in MRI.			
Text B				
1.		cation 6 th edr	2020	
	R. Gopalan, V. Ramalingam, Concise Coordination			2001.
3.	J.D. Lee, Concise Inorganic Chemistry, Blackwell	•		
4.				
5.				cating Co. 5 th edn
	2016.			
Sugges	sted Readings			
1.		n Mechanism	s, Wesley	Longman 1999.
2.	F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Boch		-	-
	John Wiley 6 th edn 1999.			
2	D E Shriver DW Atking C H Longford Increani			2rd

3. D. F. Shriver, P.W Atkins, C.H. Langford, Inorganic Chemistry, Oxford University press 3rd edn 2000.

- 4. J. E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, Principles of Structure and Reactivity, Harper Collins, 4th edn 2006.
- 5. Catherine House Croft, Inorganic Chemistry, Pearson 5th edn 2018.
- 6. B.D. Gupta and A. Elias, Basic in Organometallic Chemistry, University Press 2nd edn 2013.

Web Resources

- 1. https://bit.ly/3GdSdbm
- 2. https://bit.ly/3vB59mu

Cos	CO Description	Cognitive Level
CO 1	To understand the basic concepts of coordination compounds.	K1, K2
CO 2	To illustrate the application of crystal field theory in predicting the properties of coordination compounds.	К3
CO 3	To construct the qualitative molecular orbital diagram for σ -bonding in octahedral geometry and in sandwitch type metal complexes.	K4
CO 4	To predict the mechanisms of substitution and electron transfer reactions of octahedral and square planar metal complexes.	K5
CO 5	To create the knowledge about methods for synthesizing coordination compounds.	К6

Course Code	UCH 6502
Course Title	MOLECULAR DYNAMICS
Credits	06
Hours/Week	06
Category	Major Core (MC) – Theory
Semester	VI
Regulation	2019

Course Overview

- 1. The aim of the course is to give the basic knowledge in quantum mechanics, group theory, photochemistry and surface chemistry.
- 2. The course covers fundamental concepts of quantum mechanics: Concepts of operators, Eigenfunction, Eigenvalues. Derivation of time independent Schrodinger wave equation and particle in one-dimensional box. The course also examines the failures of classical mechanics in detail.
- 3. This course introduces the basic concepts of Group theory such as symmetry elements, symmetry operations, classes, groups, point groups and few applications.
- 4. It also deals with the laws of photochemistry, radiative and non-radiative processes, actinometer, photophysical kinetics of unimolecular processes, flash photolysis, static and dynamic quenching.
- 5. This course covers the chemistry of adsorption and colloids.

Course Objectives

- 1. To understand the limitations of classical mechanics and correlate the quantum mechanical observables.
- 2. To explain the importance of molecular symmetry and its applications in physical and chemical properties.
- 3. To outline the fundamental laws of photochemistry to interpret different photophysical processes.
- 4. To compare the kinetics of thermal and photochemical reactions.
- 5. To describe the assumptions of adsorption isotherms and utilize it for the measurement of surface area of molecules

Prerequisites	Basic knowledge of Chemistry and Mathematics

UNIT	CONTENT	HOURS	COs	COGNITIVE
	CONTENT	noons	0.03	LEVEL
I	Quantum mechanics	17	CO 1	K1, K2, K3,
1	1.1 Classical mechanics: assumptions and failures	17	CO 1 CO 2	K1, K2, K3, K4, K5, K6
	- Photoelectric effect, Compton effect, Energy		CO 2 CO 3	K4, KJ, K0
	distribution in black body radiation –		CO 3	
			CO 4 CO 5	
	Ultraviolet catastrope, Wien's and Stefan- Boltzmann's laws of emissive power,		05	
	Hydrogen atomic spectrum (Problems Only).1.2 Postulates of quantum mechanics. Concepts of			
	-			
	operators, eigen function, eigen values.			
	Derivation of time independent Schrodinger			
	wave equation, particle in one-dimensional box - derivation for energy, application to			
	ethylene and butadiene.			
	emplene and butadiene.			
II	Group theory	16	CO 1	K1, K2, K3,
	2.1 Molecular symmetry: Symmetry elements,		CO 2	K4, K5, K6
	symmetry operations, product of symmetry		CO 3	
	operations, classes, group, sub-group, Abelian		CO 4	
	group, group multiplication table – properties		CO 5	
	of a group – point groups C_s , C_i , C_1 , C_{2v} , C_{3v} ,			
	C_{2h} , $C_{\infty v}$, D_{2h} , D_{3h} , D_{4h} , D_{6h} and $D_{\infty h}$.			
	2.2 Applications: optical activity, dipole moment,			
	polarity and mutual exclusion principle.			
III	Fundamentals of photochemistry	16	CO 1	K1, K2, K3,
	3.1 Comparison of thermal and photochemical	-	CO 2	K4, K5, K6
	reactions. Laws of photochemistry: Grotthus-		CO 3	,,
	Draper Law, Kasha's rule and Stark-Einstein		CO 4	
	law. Quantum yield. Jablonski diagram -		CO 5	
	radiative and non-radiative processes –			
	internal conversion and inter system crossing.			
	Photosensitization and photosynthesis (PSI			
	and PSII).			
	3.2 Primary and secondary processes - Factors			
	affecting fluorescence, conditions for			
	phosphorescence, chemiluminescence, bio-			
	luminescence.			

SYLLABUS

IV	Kinetics and characterization of photochemical	13	CO 1	K1, K2, K3,		
	reactions		CO 2	K4, K5, K6		
	4.1 Experimental techniques- chemical		CO 3			
	actinometers - uranyl oxalate, ferric oxalate		CO 4			
	and malachite green.		CO 5			
	4.2 Kinetics of photochemical reactions -					
	photophysical kinetics of unimolecular					
	processes, formation of HCl, HBr - flash					
	photolysis. Quenching - static and dynamic,					
	Stern-Volmer equation.					
V	Surface chemistry and colloids	16	CO 1	K1, K2, K3,		
	5.1 Physical and chemical adsorption –		CO 2	K4, K5, K6		
	Adsorption isotherms – Langmuir, Freundlich		CO 3			
	and Brunauer–Emmett–Teller (BET)		CO 4			
	equations (No derivation for BET) – derivation		CO 5			
	of Gibb's adsorption equation. Determination					
	of surface area using Langmuir and BET					
	equations.					
	5.2 Colloids: Lyophobic and lyophilic sols, origin					
	of charge and stability of lyophobic colloids –					
	coagulation and Schultz-Hardy rule, zeta					
	potential and Stern double layer (qualitative					
	idea) – optical properties – Tyndall effect.					
	Mechanical properties – Brownian motion,					
	electrokinetic phenomenon (qualitative idea),					
	micelles and reverse micelles, critical micelle					
	concentration – applications of colloids.					
	·····					
Text B	l ooks					
1.	Quantum Chemistry, I.N. Levine, 7th Edition, 2016, I	Pearson Edu	cation. Lo	ondon.		
2.	Physical Chemistry, P.W. Atkins ,8th edition,2016, Pe					
3.	Chemical applications of Group theory, F.A. Cott					
	Singapore.		- , ,	,		
4.	Principles of Physical Chemistry, B.R Puri, L.R Sharn	na. M.S. Patl	nania, 47	th edition. 2016.		
	Vishal publishing.	,		- ,,		
5.	Fundamentals of Physical Chemistry, S.H. Maron, J.	J.B. Lando.	C.F. Pru	tton. Macmillan		
	1971.		•	,		
6.	Group theory and its applications in Chemistry, K.V. F	Raman.1990.	7 th Editio	n. Tata McGraw		
	Hill	,,,-,,,,,,,,,,,,,,,,,,,,,,,,,,				
7.	Text book of Physical Chemistry, M.V.Sangaran	aravanan. B	.Mahade	van. University		
	press,2011.	,		·····, ·······························		
Sugges	Suggested Readings					
1.	Quantum Chemistry, D.A. McQuarrie, 3rd Edition,	1970. Univ	.Sci.Bool	ks. Mill Vallev.		
	California.			, <u> </u>		
2.	Quantum Chemistry, J.P.Lovwe, K.A.Peterson, 3rd	Edition. 200	8. Acade	mic Press. New		
	York.					
3.	Group Theory in Chemistry, V. Ramakrishnan, M.S.	Gopinath. 20)10. Vish	al publication.		
<u> </u>	r - , - , - , , - , , - , - , , - , , - ,	· · · · · · · · · · · · · · · · · · ·	- , . 1511	1		

- 4. Physical Chemistry, P. Atkins, J.D. Paula, 9th edition, 2010, Oxford University Press.
- 5. Quantum Chtemistry, R.K. Prasad, 3rd Edition, 2001, New Age International.
- 6. Introductory Quantum Chemistry, A.K Chandra 4 Edition, 1994, Tata McGraw Hill Education.
- 7. Fundamentals of Photochemistry, K.K. Rohatgi Mukherjee, 1978, New Age International Publication, New Delhi.

Web Resources

- 1. https://nptel.ac.in/content/storage2/courses/122101001/downloads/lec-36.pdf
- 2. <u>https://nptel.ac.in/courses/104/101/104101124/</u>
- 3. https://nptel.ac.in/courses/104/108/104108057/

Cos	CO Description	Cognitive Level
CO 1	To define and understand the basic concepts of quantum mechanics, group theory, photochemistry and surface chemistry.	K1, K2
CO 2	To classify the molecules into point groups and solve problems based on surface area, quantum yield and eigen function.	К3
CO 3	To examine the importance of molecular symmetry, photoelectric effect, photo physical processes, properties of colloids and kinetics of photochemical reactions.	K4
CO 4	To critique the limitations of classical mechanics and compare thermal, photochemical reactions, actinometry adsorption isotherm and to interpret symmetry of molecules.	K5
CO 5	To derive the Schrodinger wave equation, stern-volmer equation and different adsorption isotherm equation and summarize the applications of group theory.	К6

Course Code	UCH 6503
Course Title	SYNTHETIC ORGANIC CHEMISTRY AND HETEROCYCLIC
	COMPOUNDS
Credits	06
Hours/Week	06
Category	Major Core (MC) - Theory
Semester	VI
Regulation	2019

Course Overview

- 1. Synthetic organic chemistry covers the fields of organic chemistry, natural products and medicinal chemistry.
- 2. The aim of the course is to give advanced knowledge about the planning of synthesis of organic molecules from simple starting materials.
- 3. The different modules of the course will explore the applications of various reagents towards the target molecules.
- 4. This course also reviews the chemistry of 5,6-membered heterocyclic compounds.
- This course will focus on the planning of synthesis of any chosen target molecule, use of various selected reagents and their application in the organic synthesis and chemistry of 5-, 6- and benzo fused heterocyclic compounds.

Course Objectives

- 1. Construct synthetic routes to achieve any given target molecules through retrosynthetic analysis.
- 2. Choose different reagents and use them for the fundamental organic transformations.
- 3. Compare the concepts of pericyclic reaction mechanisms.
- 4. Associate the basic aspects of 5- & 6- membered heterocyclic compounds.
- 5. Deduce the synthetic methodologies of heterocyclic compounds.

Prerequisites	Knowledge of basic concepts of chemistry.
I I CI CYUISIICS	Knowledge of basic concepts of chemistry.

SYLLABUS	

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Retrosynthetic analysis	16	CO 1	K1, K2, K3,
	1.1 Synthetic strategies: Introduction, retro		CO 2	K4, K5, K6
	synthetic analysis, target molecule,		CO 3	
	disconnection, synthons, synthetic		CO 4	
	equivalent functionalization, functional		CO 5	
	group interconversion.			
	1.2 Retrosynthetic analysis: Strategies; C-C			
	and C-hetero atom disconnection, two			
	group disconnections: 1,2- and 1,3-			
	difunctional compounds, alternate			
	synthetic routes, key intermediates;			
	consecutive and convergent synthesis;			
	synthesis based on Umpolung concepts of			
	Seebach; regiospecific control elements;			

	 use of protecting groups, activating groups and bridging elements. 1.3 Retrosynthesis of simple organic compounds: Acetyl acetone, 2,3-butadione, trans-diols, <i>sym</i>-tribromobenzene, <i>m</i>- and <i>p</i>-bromoaniline, N, N-dipropylamine, amelfolide, daminozide, cetaben ethyl ester, 2,4-dichlorophenoxyacetic acid and ofornine. 			
Ш	 Synthetic applications of selected reagents 2.1 Reduction: Catalytic hydrogenation (homogeneous and heterogeneous), Reductions with LAH, NaBH4 and DIBAL; hydroboration-oxidation, Birch, Clemmenson and Wolf-Kishner reduction. 2.2 Oxidation: Catalytic dehydrogenation, oxidation with Cr (VI) and Mn (VII) reagents. Use of Pb(OAc)4, OsO4, peracids, DMSO with oxalyl chloride, NBS, SeO2 and Ti (III) nitrate. 2.3 Organoboron and organoaluminium: synthesis and applications in C-C bond forming reactions. 	15	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
ш	 Pericyclic Reactions 3.1 Cycloaddition reactions: (2+2, 4+2); Diels Alder, intramolecular addition reactions. Electrocyclization reaction: 1,3- butadiene, 1,3,5-hexatriene derivatives. 3.2 Sigmatropic rearrangements: (1,3), (1,5), (3,3) and (5,5)-sigmatropic rearrangements, Cope, Oxy-Cope, Claisen, Sommelet-Hauser rearrangement; Group transfer reactions. 3.3 Thermal and photochemical Frontier Molecular Orbital approach. 	16	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
IV	 Heterocyclic Compounds-I 4.1 Introduction, classification and aromaticity. 4.2 Five membered rings: Preparation of furan, pyrrole and thiophene; reactions: electrophilic and nucleophilic substitutions, oxidation and reduction reactions; six membered rings: pyridine; preparation by ring closure reactions, reactions: mechanism of electrophilic and nucleophilic substitutions, oxidation and 	16	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	1					
	reduction reactions.					
	4.3 Saturated and partially saturated					
	heterocyclic compounds: reactions and					
	synthesis of tetrahydrofuran, dioxan,					
	sulpholones, tetrahydropyrrole,					
	tetrahydrothiophene, piperidine and					
	derived systems.					
V	Heterocyclic Compounds-II	15	CO 1	K1, K2, K3,		
·	5.1 Indole, isoindole, benzofuran and	10	CO 2	K4, K5, K6		
	benzothiophene, preparation and		CO 3	11, 110, 110		
	properties.		CO 4			
	* *		CO 4 CO 5			
	5.2 Quinoline and isoquinoline: preparation by		05			
	ring closure reactions.					
	5.3 Reactions: mechanism of electrophilic and					
	nucleophilic substitutions, oxidation and					
	reduction reactions.					
Text Boo	bks					
1. C	Clayden, Greeves, Warren, Organic Chemistry, Ox	ford Univers	ity Press	, Second Edition,		
2	2016.					
2. N	A. B. Smith, Organic Synthesis 3rd edn, McGraw H	ill Internatior	nal Editio	n, 2011.		
3. Ia	an Fleming, Pericyclic Reactions 2 nd edn, Oxford S	cience Public	ations, 20	015.		
4. V	/.K. Ahluwalia and Renu Aggarwal, Organic S	Synthesis: Sp	ecial Teo	chniques, Narosa		
	Publishing House, 2001.					
5. J	5. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press, Great Britain, 2004.					
6. V	6. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn, Cambridge University					
Р	Press, Cambridge, 2007.					
7. R						
		•				
Suggested Books 1. R.E. Ireland, Organic synthesis, Prentice Hall India, Goel publishing house, 1990						
	 Kiochi Tanaka, Solvent Free Organic Synthesis, Wiley VCH, Weinneim, 2003. Paula Yurkanis Bruice, Organic Chemistry 8thedn, Pearson, 2017. 					
				7 th edn Pearson		
 R. T. Morrison, R. N. Boyd and S. K. Bhattacharjee, Organic Chemistry 7thedn, Pearson, 2016. 						
5. V						
6. J. A. Joule, K. Mills, Heterocyclic Chemistry 4 th Edn, John-Wiley, 2010.						
	Central Book Agency, 2008.					
8. S.P. Bhutani, Organic Chemistry, Ane Books Pvt. Ltd, 2007.						
Web Res	sources					
1. <u>https://bit.ly/3Ec2Id4</u>						
	ps://bit.ly/2Zng5bF					
·	ps://bit.ly/3m6rVzs					
4. <u>https://bit.ly/3BbvR6m</u>						
I						

COs	CO Description	Cognitive Level
CO 1	understand the basic concepts of retrosynthesis, pericyclic reactions and heterocyclic chemistry.	K1, K2
CO 2	integrate and assess the different methods of disconnection approaches and heterocyclic compounds synthesis.	К3
CO 3	illustrate the applications of retrosynthesis and to study the mechanism of specialized reactions.	К4
CO 4	analyse various pericyclic reactions, target molecule synthesis and to appreciate the synthesis and reactions of heterocyclic compounds.	K5
CO 5	construct the structure of new heterocyclic and other organic compounds by retrosynthesis, pericyclic and modern synthetic reactions.	К6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	UCH 6701 + UCH 6706 + UCH 6705		
Course Title	INDUSTRIAL CHEMISTRY-THEORY - LAB - INTERNSHIP		
Credits	15 (Theory: 5, Lab: 5, Internship: 5)		
Hours/Week	12 (Theory: 6, Lab: 6)		
Category	Major Skill (MS)		
Semester	VI		
Regulation	2019		
Course Overview			
	Chemistry is a skill-based course that will govern through theory, practicals, ab and seminar.		
2. The aim of	f the course is to impart blended knowledge on industrial methods and products.		
3. This course covers chemistry of the fuels, agricultural, water treatment, chemical toxicolog analysis of food products and communications skills.			
 This course illustrates MS Excel, drawing chemical structures using Chem Draw, an presentation of data. 			
<u>^</u>	e imparts the importance of internship.		
Course Objectives	S		
1. To develop their creativity, critical thinking, leadership, and employability skills.			
2. To transform the acquired theoretical knowledge to industry and vice-versa,			
3. To familia	3. To familiarize with different branches of chemistry and to develop entrepreneurship skills.		
4. To apply computational knowledge in data handling.			
5. To develop communication skill in oral presentation.			
Prerequisites	Basic knowledge of chemistry.		

Course Code	UCH 6701
Course Title	INDUSTRIAL CHEMISTRY - THEORY
Credits	05
Hours/Week	06
Category	Major Skill (MS)
Semester	VI
Regulation	2019

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	 Industrial fuels 1.1 Energy: Types- heat, electrical, mechanical, light, nuclear and solar energy, hydrogen, fuel cells. Sources: renewable and non-renewable, classification of fuels: solid, liquid and gaseous. 1.2 Solid fuels: Coal- types- lignite, subbituminous coal, bituminous coal and anthracite. Coking and non-coking coal - properties and uses. 1.3 Liquid fuels: Refining of crude petroleum and uses of fractions. Hydro desulphurisation. Cracking: thermal and catalytic - fixed bed and fluidized bed. Octane and cetane number. Uses of ethyl tertiary butyl ether and methyl tertiary butyl ether. 1.4 Gaseous fuels: Natural and gobar gas: production, composition and uses. Gobar electric cell. 	16	CO 1 CO 2 CO 3 CO 4 CO 5	LEVEL K1, K2, K3, K4, K5, K6
Π	 Agricultural chemistry 2.1 Fertilizers: NPK, superphosphate, triple superphosphate, uses of mixed fertilizers. Micro nutrients and their role, bio fertilizers, plant growth hormones. 2.2 Pesticides: classification with examples, insecticides; stomach poisons, contact insecticides, fumigants. Manufacture and uses of aldrin, dieldrin, endrin and pentachlorophenol and its sodium salts, bio pesticides. Herbicides: 2,4-D and 2,4,5-T. 	16	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	 Fungicides: Preparation of Bordeaux mixture. Mention of lime-sulphur and creosote oil. 2.3 Sugar industry: Refining and grading of sugar. Saccharin: synthesis and use of sugar substitutes- aspartame. Ethanol: manufacture from molasses by 			
III	 Water Treatment 3.1 Introduction: Hardness of water – temporary and permanent. Units of hardness, disadvantages of hard water –domestic, industry and steam generation in boilers. Effect of iron and manganese in water. Estimation of hardness – EDTA method – Estimation of total hardness – O. Hehner's method or alkali titration method. 3.2 Water softening methods: Lime – soda and zeolite process; ion-exchange – demineralization - deionization process. Mixed – bed deionization. Removal of suspended impurities and microorganism – chlorination, break point chlorination, reverse osmosis, desalination and waste water treatment. 	16	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
IV	 Pollution and Chemical Toxicology 4.1 Pollution: Air pollution - acid rain. Greenhouse effect (global warming), ozone layer depletion photochemical oxidants. Smog and Control of air pollution. Water pollution – organic pollutants, chemical oxygen demand (COD), biological oxygen demand (BOD), total organic carbon. International standards for water and air quality and regulations. 4.2 Chemical toxicology: Effect of toxic chemicals on enzymes. Lead, mercury and cyanide pollution and their biochemical effects. Carbon monoxide, sulfur dioxide, oxides of nitrogen, ozone –biochemical effects.	15	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
V	Common Industrial Products 5.1 Paint: manufacture and types-enamel, oil, emulsion, cement, bituminous, plastic, anticorrosive and cellulose. Glass: manufacture and types-potash, pyrex, crown and lead crystal. Dyes: manufacture and types- acid, direct, vat, disperse.	15	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

r				
	5.2 Lubricants, greases, refractories, abrasives.			
	5.3 Preparation of perfumes, matches and			
	explosives. Vulcanization of rubber			
Books	for Study			
1.	B. K. Sharma, Industrial Chemistry: Including Chemical Engineering, Goel Publishing house, Meerut, India, 1994.			
2.	P. C. Jain, M. Jain, Engineering chemistry, 15th edn, Dhanpat Rai publications, 2015.			
3.	D. J.Zalucha,., and K. J. Abbey. "Kent and Riegel's Handbook of Industrial Chemistry and Biotechnology." Springer, 2007			
4.	W. Francis, M. C. Peters, Fuel and fuel Technology, Pergamon, 2 nd edition, 1980.			
5.	R.K. Kaleeswari R. Rajeswari J. Prabhaharan C. Bharathi, Elements of Agricultural			
	Chemistry, Sathish Serial publishing House, 2014.			
Sugges	ted Readings			
1.	C. A. Heaton, An Introduction to Industrial Chemistry, Springer Science & Business			
	Media,1996.			
2.	J. C. Kuriakose, J. Rajaram, Chemistry in engineering and technology, Tata Mcgraw hill:			
	New Delhi, Vol. 2, 2001.			
3.	Jugal, Kishore, Agrawal, Practicals in Engineering Chemistry, Oxford and IBH Publishing			
	Co., New Delhi,1976.			
Web Resources				
1.	https://bit.ly/3GgvJGE			
2.	https://bit.ly/3CffaIQ			
3.	https://bit.ly/3FNHWSQ			
4.	https://bit.ly/3B8IPD1			

Course Outcomes of UCH 6701(COs) and Cognitive Level Mapping

Cos	CO Description	Cognitive Level
CO1	To understand the basic differences in the properties of types of fuels, fertilizers. Pesticides, lubricants and dyes.	K1, K2
CO 2	To illustrate the different processes of water Softening and estimation of hardness of Water and biochemical effects of pollutants in air and water.	К3
CO 3	To construct new methods of synthesizing consumer product.	K4
CO 4	To predict the advantages and disadvantages of using industrial products against natural products.	K5
CO 5	To create the knowledge about purification of water, paints, varnishes, fertilizers and pesticides and to integrate their contribution with pollution and to explain the refining and grading of sugar, water and air qualities, paints, dyes and lubricants.	K6

Course Code	UCH 6706 + UCH 6705
Course Title	INDUSTRIAL CHEMISTRY LAB + INTERNSHIP
Credits	5 + 5
Hours/Week	6 + 3-4 WEEKS
Category	Major Skill (MS)
Semester	VI
Regulation	2019

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	A. Analysis of Food Products	26	CO 1	K1, K2, K3,
	1. Estimation of hardness of water.		CO 2	K4, K5, K6
	2. Estimation of iodine value/acid		CO 3	
	value/Reichert Meissel value of edible		CO 4	
	oil.		CO 5	
	3. Estimation of iodine in iodised salts.			
	4. Estimation of ascorbic acid.			
	5. Estimation of calcium content in sugar			
	cane juice.			
	6. Estimation of glucose.			
	7. Estimation of glycine.			
	8. Estimation of acetic acid in vinegar.			
	9. Isolation of casein/lactose from milk.			
	10. Detection of adulterants in common			
	food products.			
	B. Small scale preparation of following	16	CO 1	K1, K2, K3,
	consumer products.		CO 2	K4, K5, K6
	1. Hard Soap		CO 3	
	2. Soft Soap		CO 4	
	3. Pain Balm		CO 5	
	4. Chalk piece			
	5. Tooth paste			
	6. Shampoo			
	7. Detergent powder			
	8. Ink			
	9. Phenoyl (Toilet Cleaner)			
	10. Soda			
	11. Bleaching powder			
	12. Hand sanitizer			
	13. Natural mosquito repellent			
	14. Perfumes			

	15. Shoe polish16. Nail polish			
II	Application of computers in Chemistry	36	CO 1	K1, K2, K3,
	(2 Hours/week)		CO 2	K4, K5, K6
	1. General introduction to MS Excel 2010		CO 3	
	2. Building worksheets.		CO 4	
	3. Calculations involving standard mathematical functions.		CO 5	
	 Data – Editing, manipulation. Data presentation – Table, Chart, Graph. 			
	5. Printing of spread sheet data and graph.			
	6. Chem. Draw (Demonstration)			

Books for Study

- 1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry Lab Manual, S. Viswanathan printers and publishers Ltd, I ed., 2002.
- 2. R. Norris Shreve, and A. Joseph Brink, Chemical process industries, McGraw Hill Kogakusha Ltd. 4th ed., 1997.
- 3. George T. Austin, Shreve's Chemical Process Industries, McGraw Hill, I ed., 1984.
- 4. N. S. Subbarao, Biofertilizers in agriculture, University press, 1st edn, 2005.
- 5. K.V. Raman, Computers in Chemistry, Tata McGraw-Hill Ltd 1st edn. 1993.

Suggested Readings

- 1. 1. P. Kamaraj, R. Jeyalakshmi, V. Narayanan, Chemistry in engineering and technology, Sudhandhira publications: Chennai. 2001.
- 2. J.C. Kuriakose, J. Rajaram, Chemistry in engineering and technology, Tata McGraw Hill: New Delhi, vol.2, 1988
- **3**. Jugal, Kishore, Agarwal, Practicals in Engineering Chemistry, Oxford and IBH Publishing Co., New Delhi, 1976.
- 4. Mary George and Geetha Swaminathan, Laboratory Chemical Methods in Food Analysis, Margham Publications, Chennai, 2002
- 5. Julia Kelly, Using Microsoft Excel 2000, Prentice-Hall of India, 1999.
- 6. A. Robert de Lavie, Spreadsheet workbook for Quantitative chemical analysis, McGraw-Hill, Inc. New Delhi, 1997.

Web Resources

- 1. https://bit.ly/2XBVcZu
- 2. https://bit.ly/2ZqJIZE
- 3. https://bit.ly/3vQf6wN
- 4. https://bit.ly/3pJMuUX
- 5. https://bit.ly/3E73jwF

Course Outcomes of UCH 6706

COs	Statements	Bloom's Level
CO 1	To estimate the characteristic parameters of water, fats and oils.	K1 K2
CO 2	To determine the amount of calcium, ascorbic acid, glucose, glycine, acetic acid, casein and lactose present in food products.	К3
CO 3	To apply the Microsoft excel to solve simple chemistry problems and present the data in the form of table and graph.	K4
CO 4	To acquire entrepreneur skills to prepare consumer products in a small scale.	К5
CO 5	To develop the presentation and communication skills through seminar	K6

COs	CO Description	Cognitive Level
CO 1	To understand the basic concepts of fuels, fertilizers, water and air qualities, industrial products, building worksheets, isolation and estimation of compounds.	K1, K2
CO 2	To illustrate the different types of industrial fuels, agricultural products, water softening methods, toxicological effects, preparation of cosmetic products.	К3
CO 3	To analyse the fuels, pesticides, water softening agents, chemical toxicology, dyes, data from practical experiments and different methods of estimations of compounds.	К4
CO 4	To determine the calorific value of fuels, grading of sugar, BOD and COD, compositions of industrial products, iodine, acid and RM value of an edible oils.	K5
CO 5	To construct the water softening methods, a table of experiment data in MS Excel and to synthesize the sugar substitutes and perfumes.	K6

Course Code	UCH 2301				
Course Title	CHEMISTRY FOR BIOLOGY				
Credits	02				
Hours/Week	04				
Category	Allied Required (AR) – Theory				
Semester	II				
Regulation	2019				
Course Overview					
1. Chemistry for	r biology paper provides the fundamental concepts in chemistry that are				
essential to bi	ologists.				
2. An exposure t	o error and data analysis can certainly help to achieve precision and accuracy				
in their experi	ments.				
3. A few modul	A few modules of the course explore the application of chemical techniques including				
separation and	l titrimetry.				
4. The other mod	dule illustrates the safe means to use, store and transport chemicals.				
5. This course for	This course focuses on achieving a fundamental understanding of chemistry that is broadly				
applicable in e	everyday life.				
Course Objectives					
1. To understand	the guidelines regarding the proper use, handling and storage of chemicals, response in the event of an emergency in the laboratory.				
2. To have a ma	stery over the methods for separating mixtures using the techniques such as				
	ystallization and the chromatography.				
	udents with the required theory on the quantitative analysis which includes				
preparation of	of standard solution, standardization of the solutions, calculation and				
interpretation	of the results.				
4. To familiarize	with the characteristics of ionic, covalent, coordinate and hydrogen bonds.				
	nd the chemistry of polymers, dyes, soaps, detergents and milk.				
Prerequisites Basic knowledge of Chemistry					
•					

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	Safety, Storage and handling of	9	CO 1	K1, K2, K3,
	chemicals		CO 2	K4, K5, K6
	1.1 Safety: Safety rules, first aid		CO 3	
	procedure, LPG, material		CO 4	
	safety data sheet (MSDS).		CO 5	
	1.2 Storage of chemicals: Rules for storing chemicals.			
	1.3 Handling: Handling of acids, ethers, toxic and poisonous chemicals. Antidotes.			

II	Sei	paration techniques	9	CO 1	K1, K2, K3,
	2.1	Solvent extraction, Distillation: Steam	,	CO 2	K4, K5, K6
	2.1	and fractional distillation,		CO 2	кч, ко, ко
		crystallization, fractional		CO 4	
				CO 4 CO 5	
	2.2	crystallization.		05	
	2.2	Chromatography: Types – paper, thin			
		layer and column chromatography,			
		gel electrophoresis.			
III		it 3. Volumetric Analysis	13	CO 1	K1, K2, K3,
	3.1	Data analysis, Errors in chemical		CO 2	K4, K5, K6
		analysis: Accuracy, precision. Types		CO 3	
		of error-absolute and relative errors,		CO 4	
		methods of eliminating and		CO 5	
		minimizing errors.			
	3.2	Principle of titrations, Concentration			
		terms: Molarity, molality, normality,			
		formality, ppm and ppb.			
	3.3	Titrations: Types, acid-base titrations,			
	5.5	ionic product, Indicators: types and			
		uses, pH, common ion effect, buffer			
		-			
		solutions: Principle, preparations and			
		uses.	10	CO 1	
IV		it 4. Chemical bonding	13	CO 1	K1, K2, K3,
	4.1	Ionic Bond: Characteristics of ionic		CO 2	K4, K5, K6
		compounds, Factors influencing the		CO 3	
		formation of ionic bond.		CO 4	
	4.2	Covalent Bond: Characteristics of		CO 5	
		covalent compounds.			
	4.3	Coordinate Bond: Nature of			
		coordinate bond. Coordination			
		complexes - Structure and functions			
		of chlorophyll and hemoglobin.			
	4.4	Hydrogen Bond: Theory, types and			
		importance of hydrogen bonding.			
V	Ch	emistry in everyday life	8	CO 1	K1, K2, K3,
	5.1	Polymers: Monomers, Types - Natural		CO 2	K4, K5, K6
		and synthetic, biodegradable		CO 3	
		polymers, vulcanization of rubber.		CO 4	
	5.2	Dyes: Requirements, Chromophore,		CO 5	
		auxochrome, types based on			
		application.			
	5.3	Soaps and detergents: Types,			
		Saponification, cleaning action.			
	5.4	Milk: Composition of milk,			
	5.4	homogenization, pasteurization.			
		nomogenization, pasteurization.			

Text Books

- 1. R. Gopalan, S. Sundaram, Allied Chemistry, Sultan Chand & Sons (P) Ltd, 4th edn., 2006.
- 2. R. Gopalan, P. S. Subramanian and K. Rengarajan, Elements of Analytical Chemistry, Sultan Chand & Sons, New Delhi, 2003.
- 3. U. N. Dash, Analytical Chemistry: Theory and Practice, Sultan Chand and sons Educational Publishers, New Delhi, 2011.
- 4. U. Sathyanarayana, Biochemistry, Books and allied (P) Ltd, 4th edn., 2013.
- 5. B.R. Puri and L.R. Sharma, M.S. Pathania, Principles of physical chemistry, Vishal Publication Co., 46th edn., 2013.

Suggested Readings

- 1. D.A. Skoog, D.M. West, F.J. Holler, Analytical Chemistry: An Introduction, Saunders college publishing, 5th edn., 1998.
- 2. B.R. Puri, L. R. Sharma, K. C. Kalia, Principles of Inorganic Chemistry, Shoban Lal Nagin Chand and Co., 2014.
- 3. G.C. Hill, J.S. Holman, Chemistry in Context 5thedn., ELBS, 2017.
- 4. W.R. Kneen, M.J.W. Rogers, P. Simpson, Chemistry Facts, patterns and principles, ELBS, 1999.
- 5. B. K. Sharma, Industrial Chemistry, Goel Publishing House, New Delhi, 2000.

Web Resources

- 1. <u>https://bit.ly/3vEuTOV</u>
- 2. <u>https://bit.ly/3aKo2K0</u>
- 3. <u>https://bit.ly/3pr9Tu5</u>
- 4. <u>https://bit.ly/3lHcuh2</u>
- 5. https://bit.ly/3vm55Hd
- 6. <u>https://bit.ly/3ANpbLw</u>

COs	CO Description	Cognitive Level
CO 1	To understand and recall definitions, basics of titration, chemical bonding and composition of chemical compounds.	K1, K2
CO 2	To Calculate errors in chemical analysis to express concentration of solutions in various units and clarify the chemical compounds used in day-to-day life.	К3
CO 3	To illustrate the characteristics of different types of chemical bonding, principle of volumetric analysis and separation techniques	K4
CO 4	To outline the importance of safe handling, storage of chemicals, data analysis, chemistry in daily life, bonding and functions of biologically important compounds.	K5
CO 5	To explain the role of different chemicals and bonding, buffer solutions, methods of separating mixtures and chemistry in everyday life.	K6

Course Code	UCH 2302			
Course Title	CHEMISTRY PRACTICALS FOR BIOLOGY			
Credits	Credits 01			
Hours/Week	02			
Category	Allied Required (AR) - Practicals			
Semester	П			
Regulation	2019			
 The laborate compounds. The importa possible imp The analysi groups. This course 	bractical for biology involves the analysis of organic compounds. Bory exercise has been designed to give a practical knowledge on analysing organic ance of this course is to understand the properties of organic compounds and their boact on biological molecules. Its includes nitrogen containing and non-nitrogen containing organic functional gives understanding of overall analysis of any organic compound.			
Course Objectives				
2. To handle compounds.				
<u>^</u>	To interpret the results to identify various organic compounds.			
-	To explain the reason for the results obtained during each experiment.			
5. To develop analysis.	a technique to analyze biological compounds based on the knowledge of organic			

Prerequisites	Basic knowledge of organic chemistry.

	STEERBOS			
UNIT	CONTENT	HOURS	COs	COGNITIV
				E LEVEL
Ι	Organic Analysis	26	CO 1	K1, K2, K3,
	1) Detection of nitrogen		CO 2	K4, K5, K6
	2) Tests for aromaticity		CO 3	
	3) Tests for saturation		CO 4	
	4) Identification of chemical nature		CO 5	
	(acidic/basic/neutral) of the following functional			
	groups			
	I. Carboxylic acid			
	II. Phenols			
	III. Aldehydes			
	IV. Ketones			
	V. Carbohydrates			
	VI. Primary amines			
	VII. Amides			

Suggested Readings

- 1. V. Venkateswaran, R. Veeraswamy and A.R. Kulandaivelu, Basic Principles of Practical Chemistry, 2nd edn., S. Chand Publications, New Delhi, 2017.
- 2. N.S. Gnanapragasam, G. Ramamurthy, Organic chemistry Lab manual, S. Viswanathan Co. Pvt. Ltd., 2012.
- 3. Raj K. Bansal, Laboratory Manual of Organic Chemistry, 5th edn., New Age International Edition, New Delhi, 2012.
- 4. J.N. Gurtu and R. Kapoor, Advanced Experimental Chemistry (Organic), S. Chand and Co., 1987.

Web Resources

- 1. <u>https://bit.ly/3m6u2Dx</u>
- 2. https://bit.ly/3vet23a

COs	CO Description	Cognitive Level
CO 1	To understand the principle of organic analysis.	K1, K2
CO 2	To identify the properties of organic compounds.	К3
CO 3	To analyse the functional groups systematically.	K4
CO 4	To obtain skills to test the organic compounds.	K5
CO 5	To differentiate the aromatic and aliphatic functional compounds through complete analysis.	K6

Course CodeUCH 2303Course TitleCHEMISTRY FOR PHYSICSCredits02Hours/Week04CategoryAllied Required (AR) – TheorySemesterIIRegulation2019	
Credits02Hours/Week04CategoryAllied Required (AR) – TheorySemesterII	
Hours/Week 04 Category Allied Required (AR) – Theory Semester II	
Category Allied Required (AR) – Theory Semester II	
Semester II	
Regulation 2019	
 The course Chemistry for Physics facilitates learners to understand the fundamentals of analytical, coordination, ionic equilibria, kinetics and industrial chemistry. The course also imparts learners with the essential information about concepts of various chemistry fields. This paper clearly explains the basic knowledge about volumetric analysis, theories of coordination compounds and concepts of acids and bases. This course explains the rate, order of the reactions, types of batteries, and photochemical laws. The course provides the theoretical knowledge of industrial chemistry like water treatment, water purification process and polymer. 	
Course Objectives	
1. To understand the basic principles of volumetric analysis, learn to use it in practical ways.	
2. To acquire the knowledge about the name of the given coordination compounds.	
3. To explain the basic concepts of acids and bases.	
4. To apply the knowledge about order in different types of reactions.	
5. To learn the different types of water purification process.	

Prerequisites	Basic knowledge of Chemistry
---------------	------------------------------

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	 1.1 Safety and handling of chemicals: Methods of expressing concentration: normality, molarity, molality, mole fraction, ppm, ppb. Primary and secondary standards: preparation of standard solutions. 1.2 Principle of volumetric analysis: end point and equivalence point. Accuracy- Precision-Types of error, methods of minimization of errors. 	9	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

		1 10	00 f	
Π	 2.1 Double salts and coordination compound Basic concepts and rules for namicoordination compounds, Types of ligat – Chelate effect. 2.2 Theories: Werner and valence botheories - Relationship between magnetism and geometry - K4Fe(CN [CoF₆]³⁻, [Ni(CO)₄], [NiCl₄ Application of coordination complex Erio chrome black - T as metal indicator. 	ing nds ond een 06], .] ²⁻ . es:	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
III	Common ion effect, buffer solution Henderson equation.	and ter, lity lts. ns, and on. ary m-	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
IV	 4.1 Kinetics: Rate, rate law, rate constation order and molecularity. Derivation of receptor and molecularity. Derivation of receptor and molecularity. Derivation of reaction for first and second order reaction – equal concentration reactants. Methods of determining order of a reaction. Factors affecting the rate a reaction. Factors affecting the rate a reaction, Arrhenius equation. 4.2 Photochemistry: Comparison betwee thermal and photochemical reaction Grotthus-Draper law, Stark-Einstein la Beer-Lambert law - derivative verification and applications. Jablon diagram, quantum yie photosensitization. 	ate der of der e of een ns, aw, on,	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
V	5.1 Water treatment: hardness of wat temporary and permanent hardne disadvantages of hard water. Estimate of hardness by EDTA method.	ess, ion ion ted	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

	Disinfection – ozone, UV, chlorination,			
	BIS- specification of drinking water.			
	5.3 Polymers: Classification – natural and			
	synthetic, addition and condensation			
	polymerization. Thermoplastics:			
	Polyvinyl chloride and Polytetrafluoro			
	ethylene and thermosetting plastics:			
	Bakelite (Synthesis and applications			
	only). Recycling of polymers -			
	significance. Biodegradable polymers –			
	examples and significance.			
Text I	Books			
	R. Gopalan, K. Rangarajan, P.S. Subramanian, Elements of Analytical Chemistry, 3rd.edn.,			
	Sultan Chand and Sons, 2017.			
2.	 R. Gopalan, S. Sundaram, Allied Chemistry, 4th.edn., Sultan Chand and Sons, 2006. 			
	 G. D. Tuli, R. D. Madan, Wahid U. Malik, Selected Topics in Inorganic Chemistry, 17th.edn., 			
	Sultan Chand and Sons, 2017			
4.	4. B.R. Puri, L.R. Sharma, M.S. Pathania, Principles of Physical Chemistry, 46 th .edn., Vishal			
	Publishing Co. Jalandhar, 2013.			
5.	5. V.R. Gowariker, Polymer Science, Wiley Eastern, 1995.			
6.	 P.C. Jain, M. Jain, Engineering Chemistry, 16thedn., Dhanpatrai and sons: Delhi, 2004. 			
Suggested Readings				
00	1. G.C. Hill, J.S. Holman, Chemistry in Context, ELBS, 1998.			
	2. W.R. Kneen, M.J.W. Rogers, P. Simpson, Chemistry – Facts, patterns and principles, ELBS,			
	1999.			
3.	3. Bruce H. Mahan, University Chemistry, 3 rd .edn., Addition-Wesley Publishing Company,			
	1977.			
Web 1	Resources			
1.	https://bit.lv/3m5aK3h			

- 1. <u>https://bit.ly/3m5qK3h</u> 2. <u>https://bit.ly/3E6ptUb</u>
- 2. <u>https://bit.ly/3E6ntHh</u>

COs	CO Description	Cognitive Level
CO 1	To understand the safe methods of handling chemicals	K1, K2
CO 2	To write the IUPAC nomenclature of coordination complexes and discuss the theories of coordination compounds.	К3
CO 3	To compute parameters such as pH, pka, pkb of electrochemical cells.	K4
CO 4	To derive kinetic parameters and fundamental laws of photochemistry.	K5
CO 5	To discuss the various industrial processes.	K6

Course Code	UCH 2304
Course Title	CHEMISTRY PRACTICAL FOR PHYSICS
Credits	01
Hours/Week	02
Category	Allied required (AR) - Lab
Semester	П
Regulation	2019
 chemicals 2. The hands industry. 3. This cours 4. This cours 5. The labora 	the helps the students to get trained in the preparation of solutions, safe handling of and apparatus. So-on training gained in performing the experiments would harness the skill for the provides an opportunity to develop the experimental skills of the students. The accomplishes analytical and technical caliber for their career. The tory experience gained would develop skills in scientific methods of planning, g and reporting the experimental data.
Course Objective	
	he students with practical skills in Chemistry.
	tand the basic principles behind the volumetric analysis. It the end point and estimate the amount of the analyte using titrations.
5. 10 mild 0u	t the end point and estimate the amount of the analyte using utfations.

- 4. To develop the skills to obtain accuracy and precision in experiments.
- 5. To gain the analytical skills for the estimation of chemical compounds.

Prerequisites	Basic knowledge of volumetric analysis

EXPT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	ACIDIMETRY AND ALKALIMETRY	8	CO 1	K1, K2, K3,
	1. Estimation of NaOH		CO 2	K4, K5, K6
	2. Estimation of Na ₂ CO ₃		CO 3	
	3. Estimation of HCl		CO 4	
			CO 5	
II	PERMANGANOMETRY	4	CO 1	K1, K2, K3,
	1. Estimation of Oxalic acid.		CO 2	K4, K5, K6
	2. Estimation of ferrous ammonium sulphate		CO 3	
			CO 4	
			CO 5	
III	IODOMETRY	7	CO 1	K1, K2, K3,
	1. Estimation of $K_2Cr_2O_7$		CO 2	K4, K5, K6
	2. Estimation of copper.		CO 3	
			CO 4	
			CO 5	

SYLLABUS

IV	COMPLEXOMETRIC TITRATIONS	7	CO 1	K1, K2, K3,
	1. Estimation of zinc		CO 2	K4, K5, K6
	2. Estimation of hardness of water by EDTA.		CO 3	
			CO 4	
			CO 5	
Text	Books	<u>8</u>		
1	J.N. Gurtu and R. Kapoor, Experimental Chemistry,	S.Chand and	Co, 1987	
2	D. N. Bajpai, O. P. Pandey, S. Giri, Practical Chemis	stry, S.Chand	and Co, 2	2013.
3	V K Ahluwalia, Sunita Dhingra, Sunita Dhingram, Co	ollege Practic	al Chemis	try, Universities
	Press, 2005.			
4	P.C. Kamboj, Advanced University Practical Chemis	stry, Part I, Vi	shal Publ	ishing Co. 2014.
5	Chirag Fultariya, Jalpa Harsora 2017, Volumetric	Analysis Co	oncepts a	nd Experiments,
	Lulu.com.			
Sugg	ested Readings			
1	Peter McPherson, Practical Volumetric Analysis, Ro	yal Society o	f Chemist	ry, 2015.
2	R. Shobha, M. Banani, Essentials of Analytical Cher	nistry, Pearso	on, 2017.	
3	V. Venkateswaran, R. Veeraswamy and A.R. Kula	ndaivelu, Bas	sic Princip	ples of Practical
	Chemistry, 2ndedn.,S.Chand Publications, New Dell	ni, 2004.		
4	S. Sundaram and K. Raghavan, Practical Chemistry,	S. Viswantha	an Co. Pvi	t, 1996.
5	G. Svehla, 2011, Vogel's Text Book of Inorganic Qu	alitative Ana	lysis, 7th	edition, Pearson
	Education.			
Web	Resources			
1. <u>h</u>	tps://bit.ly/3B7tOQV			
2. <u>h</u>	tps://bit.ly/30V85ze			
3. <u>h</u>	tps://bit.ly/3B5WOIQ			
4. <u>h</u>	tps://bit.ly/3C9PXPS			
5. <u>h</u>	tps://bit.ly/30Ip9rZ			
6. <u>h</u>	<u>tps://bit.ly/3BPnwqc</u>			

COs	CO Description	Cognitive Level
CO 1	To recall the principle of the volumetric analysis and the significance of indicators.	K1, K2
CO 2	To perform the titrations of different types based on the relevant procedure.	К3
CO 3	To observe the end points of the titration and record the concordant titre values.	K4
CO 4	To determine quantitatively the concentration and weight of the given analyte.	К5
CO 5	To consolidate and present the result of the experiments scientifically.	K6

Course Code	UCH 3401
Course Title	APPLIED CHEMISTRY FOR PHYSICS
Credits	03
Hours/Week	03
Category	Allied Optional (AO) - Theory
Semester	III
Regulation	2019
Course Overvie	ew
1. The spec	cific aim of the course is to provide the fundamental aspects of functional materials.
2. This co	urse discusses and relates the phase rule and its applications for various phase
transitio	ns.
3. The cou	urse also provides the knowledge of different types of corrosion and prevention
methods	S.
4. This sub	pject also covers the principle and applications of thermogravimetric analysis.
5. The clas	ssifications of carbohydrates and lipids are also included in this course to discuss the
structure	es of biomolecules.
Course Objecti	ves
1. To list the	he theories and applications of various functional materials.
2. To analy	yze the stability of chemical compounds by thermogravimetric analysis.
3. To expl	ain the applications of phase rules in the separation of pure component from the
mixture	S.
4. To acces	ss the knowledge of corrosion chemistry and its prevention methods.
5. To evalu	uate the structure and functions of biomolecules.
Prerequisites	Basic knowledge of chemistry

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	Functional Materials	7	CO 1	K1, K2, K3,
	1.1 Superconductivity: Introduction, Meissner		CO 2	K4, K5, K6
	effect, critical magnetic field, critical current.		CO 3	
	Josephson effect. Bardeen, Cooper and		CO 4	
	Schrieffer theory and cooper pairs. Types and		CO 5	
	applications of superconducting materials.			
	1.2 Nonlinear optics and liquid crystals: Introduction			
	to nonlinear optics, single harmonic generation			
	and optical mixing. Liquid crystals –			
	Introduction, classification with examples of			
	nematic, smectic, cholestric and columnar			
	liquid crystals. Properties and applications.			
II	Thermoanalytical methods	8	CO 1	K1, K2, K3,
	2.1 Thermal methods – principle and instrumentation		CO 2	K4, K5, K6
	of TGA, DTA and DTG.TGA of CaC ₂ O ₄ ·H ₂ O		CO 3	
	and AgNO ₃ . DTG of CuSO ₄ ·5H ₂ O. DTA of		CO 4	
	sulphur and $CaC_2O_4 \cdot H_2O$.		CO 5	

	2.2 Factors affecting thermogram.			
III	Phase Diagram and Phase Transitions	8	CO 1	K1, K2, K3,
	3.1 Phase rule: Concepts of phase, components and		CO 2	K4, K5, K6
	degrees of freedom with examples. Gibb's phase		CO 3	
	rule – derivation and their applications to		CO 4	
	equilibrium in phase transitions. (solid- liquid,		CO 5	
	liquid- vapour and solid- vapour).			
	3.2 One component and two component systems:			
	Phase diagram of water and sulphur, simple			
	eutectic, lead- silver system.			
IV	Corrosion	8	CO 1	K1, K2, K3,
	4.1 Introduction – definition, types of corrosion –	Ť	CO 2	K4, K5, K6
	direct, electrochemical, galvanic, liquid metal,		CO 3	7 - 7 -
	erosion and microbiologically influenced		CO 4	
	corrosion.		CO 5	
	4.2 Corrosion and its prevention, control by internal		000	
	and external means - conditioning and alloying			
	the metals, corrosion inhibitors, modification of			
	corrosion environment, protective and organic			
	coatings, cathodic and anodic protection.			
V	Biomolecules	8	CO 1	V1 V2 V2
v	5.1 Lipids and amino acids: Classification of lipids,	0	CO 1 CO 2	K1, K2, K3, K4, K5, K6
	iodine value, acid value, RM value and		CO 2 CO 3	\mathbf{K} 4, \mathbf{K} 3, \mathbf{K} 0
	saponification value of oils. Essential fatty acids.		CO 3 CO 4	
	Classification of amino acids (acidic, basic,		CO 4	
			05	
	neutral; cyclic and aromatic) isoelectric point, zwitterion, essential amino acids.			
	5.2 Carbohydrates: Classification, reducing and non- reducing sugar, tests for carbohydrates –			
	Benedict's test, Fehling's test, Molish's test.			
	Structure of glucose, fructose, sucrose, lactose			
T (D	and starch (no elucidation).			
Text B		I_{a1a} (2010)	Duin sin1	an of Matarial
1.	S. Mohan, V Arjunan, Sujin P Jose and M Kanchana M Science, MJP Publishers.	lala, (2019)	Principi	es of Material
2		lipptions Ck	annai	
	P.K. Palanisamy, Material Science (2017) Scitech Pub P. P. Duri L. P. Sharma and M. S. Pathania (2007) Pri			hamistary 20th
5.	B. R. Puri, L. R. Sharma and M. S. Pathania (2007) Pri	incipie of Pr	lysical C	nemistry 38 th
4	edition S. Nagin Chand and Co.		1	
	S. Usharani (2008) Analytical Chemistry, Macmillan I		1.	
5.	S.C. Rastogi (2007) Biochemistry, Tata McGraw Hill	puonsners.		
00	ted Readings			
1.	L. Veerakumari, (2004) MJP Publishers, 1 st edition.			h (200 4)
2.	R. Gopalan, P.S. Subramanian, K. Rengarajan, Eleme	ents of Anal	lytical C	hemistry (2004)
	Sultan Chand & Sons, New Delhi.			
	esources			
1.	https://nptel.ac.in/courses/113108051/			
2.	https://nptel.ac.in/courses/104/101/104101093/			

COs	CO Description	Cognitive Level
CO 1	To understand and recall the basic concepts of various types of chemical reactions.	K1, K2
CO 2	To integrate and apply the physical and chemical changes of materials.	К3
CO 3	To analyze and classify the structure of chemical compounds.	K4
CO 4	To formulate the significance of redox and decomposition reactions.	K5
CO 5	To access the fundamental aspects of chemical reactions.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course	Code	UCH 3402
Course	Title	APPLIED CHEMISTRY PRACTICAL FOR PHYSICS
Credits		01
Hours/	Week	02
Catego	ry	Allied Optional (AO) - Lab
Semest	er	III
Regula	tion	2019
2. 3. 4. 5.	The lab position This co their eff This lab and rep The ana compo	urse helps the students to get trained in safe handling of chemicals and apparatus. oratory ambience obtained through this course could develop the required skill for a n in an industry/company/factory/research laboratory. ourse can bring about the scientific interpretation of data and helps them to improve ficiency for societal developments. oratory experience would develop skills in scientific methods of planning, executing orting the experimental data. alytical approach followed in the quantitative estimations of biologically important ands would certainly develop technical skills.
Course	Object	ives:
1.	To und titration	lerstand the principle of volumetric analysis and the significance of indicators in
2.		nate the amount of glucose and starch using Benedict's method.
2. 3.		ermine iodine, acid and saponification value of oils.
3. 4.		nate the amount of biologically important analytes such as ascorbic acid, glycine and
т.		quantitatively.
5.		ematically isolate biomolecules from food samples.
Duonog	•••	Design har and a day of Chamistan, Dhaving and Mathematics

Prerequisites Basic knowledge of Chemistry, Physics and Mathematics

SYLLABUS

UNIT	CONTENT	HOURS	COS	COGNITIVE
				LEVEL
1	1. Estimation of iodine value of oil.	26	CO 1	K1, K2, K3,
	2. Estimation of acid value of oil		CO 2	K4, K5, K6
	3. Estimation of RM (Reichert Meissel) value of		CO 3	
	oil.		CO 4	
	4. Estimation saponification value of oil.		CO 5	
	5. Estimation of ascorbic acid in Vitamin C tablet.			
	6. Estimation of glycine.			
	7. Estimation of glucose by Benedict's method.			
	8. Estimation of starch by Benedict's method.			
	9. Isolation of casein and lactose from milk.			
	10. Estimation of iodine in iodised salt.			

	 11. Estimation of available carbon dioxide in baking powder. 12. Determination of molecular weight of high polymer by viscosity measurement. 13. Construction of phase diagram for a simple eutectic system. 			
Text B				
1.	Geetha Swaminathan and Mary George, Laboratory chemical methods in food analysis, Margham Publications, 2002, Second edition.			
2.	Jeyavathana Samuel, Chemistry Practical Book, G. G. Printers, Chennai, 2012, New edition.			
3.	S. Sundaram, P. Krishnan and P.S. Raghavan, Practical Chemistry, S. Viswanathan Co.			
	Pvt.1996.			
4.	V K Ahluwalia, Sunita Dhingra, Sunita Dhingram, College Practical Chemistry, Universities			
	Press, 2005.			
5.	5. P.C. kamboj, Advanced University Practical Chemistry, Part I, Vishal Publishing Co. 2014.			
Sugges	Suggested Readings			
1.				
	of quantitative chemical Analysis, Pearson education, Chennai, 2014, Sixth edition.			
2.				
3.	R.Shobha, M. Banani, Essentials of Analytical Chemistry, Pearson, 2017.			
4.				
	Chemistry, 2 nd edn. S.Chand Publications, New Delhi, 2004.			
Web R	lesources			
1.	https://bit.ly/3m4xYVp			
2.	https://bit.ly/3Cc5uPg			
3.	https://bit.ly/3b3xto9			
4.	https://bit.ly/3jw8T3T			

COs	CO Description	Cognitive Level
CO 1	To recall the principle of the volumetric analysis and the significance of indicators.	K1, K2
CO 2	To perform the titrations of different types based on the relevant procedure.	К3
CO 3	To observe the end points of the titration and record the concordant titre values.	K4
CO 4	To determine quantitatively the concentration and weight of the given analyte.	К5
CO 5	To consolidate and present the result of the experiments scientifically.	K6

Course Code	UCH 3403			
Course Title	BIOCHEMISTRY FOR BIOLOGY			
Credits	02			
Hours/week	03			
Total Hours	45			
Category	Allied Optional (AO)- Theory			
Semester	ш			
 This course deals with important classes of biomolecules such as nucleic acids, proteins, carbohydrates and lipids. It discusses the structural features and biological functions of selected biomolecules. The course outlines the factors affecting the structures and functions of biomolecules. It highlights the importance and the role of biomolecules. This course also gives isolation, structure and functions of natural products. 				
Course Objectives				
1. To understand and state the importance of biomolecules such as nucleic acids, proteins, carbohydrates and lipids in living organisms.				
2. To determine the classification and the characteristic structural features of these biomolecules.				
3. To correlate their physicochemical properties with their structural features.				
4. To formulate the significant role of these biomolecules in key biological functions.				
5. To appraise the chemistry of these biomolecules to understand the functions of life.				
Prerequisites	Basic knowledge of Biochemistry and Chemistry			

UNIT	CONTENT	HOURS	COs	COGNITIVE
				LEVEL
Ι	PROTEINS AND ENZYMES	8	CO 1	K1, K2, K3,
	1.1 Amino acids: Classification, zwitter ions,		CO 2	K4, K5, K6
	isoelectric point, peptide linkage.		CO 3	
	Proteins: Classification based on		CO 4	
	structure and functions, primary and		CO 5	
	secondary structure, denaturation and			
	renaturation, test for protein- Ninhydrin test,			
	Biuret test.			
	1.2 Enzymes: Classification, factors affecting			
	enzyme activity, mechanism of enzyme			
	action.			

SYLLABUS

II	NUCLEIC ACIDS	8	CO 1	K1, K2, K3,	
			CO 2	K4, K5, K6	
	2.1 Components of nucleic acids, structure of		CO 3		
	purine and pyrimidine bases.		CO 4		
	2.2 Hydrogen bonding in nitrogeneous bases in		CO 5		
	DNA, structure of DNA, types and				
	functions of RNA, differences between				
	DNA and RNA, replication, translation and				
	transcription.				
III	LIPIDS	8	CO 1	K1, K2, K3,	
	3.1 Types and functions of lipids (fatty acids,		CO 2	K4, K5, K6	
	glycerides, complex lipids and non-		CO 3		
	glycerides).		CO 4		
	3.2 Fats and oils (rancidity, saponification,		CO 5		
	hydrogenation of oils) waxes, phospholipids (lecithins, cephalins,				
	phospholipids (lectumis, cephanis, plasmalogens)				
IV	CARBOHYDRATES	8	CO 1	K1, K2, K3,	
	4.1 Introduction, classification and functions of	Ŭ	CO 2	K4, K5, K6	
	carbohydrates, structure of glucose and		CO 3	7 - 7 -	
	fructose, mutarotation.		CO 4		
	4.2 Differences between reducing and non-		CO 5		
	reducing sugars, test for carbohydrates,				
	structure of sucrose, maltose and lactose,				
	inversion of cane sugar.				
V	NATURAL PRODUCTS	7	CO 1	K1, K2, K3,	
	5.1 Alkaloids: Classification, isolation and		CO 2	K4, K5, K6	
	biological importance (structure and		CO 3		
	functions of papaverine, nicotine, coniine)		CO 4		
	5.2 Terpenes: Isoprene rule, classification,		CO 5		
	extraction and biological importance				
	(structure and functions of camphor, citral and α -pinene).				
	Text Books				
	1. G.P. Talwar and L.M. Srivatsava, Textbook of Biochemistry and Human Biology, 3 rd edn,				
	Printice-Hall of India Limited, New Delhi, 2006.				
	Sons, New Delhi, 2005	Dringinlag	of Dios	amistry 7th ada	
	A. Lehninger, D. L. Nelson, M. Cox and M. M. Cox, Principles of Biochemistry, 7 th edn, MPS Publishers, New York, 2017.				
	•				
	publishing House Pvt. Ltd, Mumbai, 2018				
	Delhi, 2015.				
7.	U. Satyanarayana an7d U. Chakrapani, Biochemistry, 5th edn., Elsevier, 2019.				

Suggested Readings

1. T. Palmer and P. Bonner, Enzymes: Biochemistry, Biotechnology, Clinical Chemistry, 2nd edn.,

First East West Press Pvt Ltd., New Delhi, 2008.

- 2. J.M. Herg, J.L. Tymoczko and L. Stryer, Biochemistry, 5thedn, WH-Freeman and Co, 2002.
- 3. Keshav Trehan, Biochemistry, 2nd edn, Wiley Eastern Ltd, 1990.
- 4. E.J. Wood and W.R. Pickering, Introducing Biochemistry, ELBS, 1984.

Web Resources

- 1. https://library.umac.mo/
- 2. <u>https://www.iict.res.in/</u>
- 3. https://www.louisbolk.org

СО	CO Description	Cognitive Level
CO 1	To understand and recall the biological importance of the class of biomolecules such as nucleic acids, proteins, carbohydrates and lipids.	K1, K2
CO 2	To establish and correlate the structure and the properties of these biomolecules.	К3
CO 3	To compare the structural features and the biological functions of these molecules.	K4
CO 4	To analyze and formulate the functions of the natural products such as terpenes and alkaloids.	К5
CO 5	To appraise the chemistry of these biomolecules and natural products to understand their key functions in living organisms.	K6

Course Code	UCH 3404
Course Title	BIOCHEMISTRY PRACTICALS FOR BIOLOGY
Credits	02
Hours/week	02
Category	Allied optional (AO)-Practicals
Semester	III
Regulation	2019

Course Overview

1. This course intends to develop necessary experimental skills required for the analysis of biomolecules.

- 2. It deals with the estimation of biomolecules.
- 3. It provides an overview on the techniques utilized for the estimation of biomolecules.
- 4. The course discusses various separation techniques used for the isolation of biomolecules.
- 5. It also describes the methods to quantify the activity of the biomolecules.

Course Objectives

- 1. understand the principles of quantitative analysis.
- 2. apply the concepts of quantitative analysis to estimate biomolecules.
- 3. develop various analytical skills and techniques necessary for the analysis of biological molecules.
- 4. compare and apply various separation techniques to isolate biologically important compounds.
- 5. appraise and utilize the analytical knowledge to understand various biological processes.

Prerequisites

SYLLABUS

CONTENT	COs	COGNITIVE
		LEVEL
QUANTITATIVE EXPERIMENTS:	CO 1	K1, K2, K3,
1. Estimation of ascorbic acid using iodimetric method.	CO 2	K4, K5, K6
2. Estimation of glucose using Benedict's method.	CO 3	
3. Estimation of glycine.	CO 4	
4. Determination of hardness of water.	CO 5	
5. Determination of acid value of oil.		
6. Determination of iodine value of oil.		
7. Determination of saponification value of oil.		
8. Estimation of activity of catalase in raddish and chow chow.		
QUALITATIVE EXPERIMENTS: (INCLUDED FOR	CO 1	K1, K2, K3,
EVALUATION)	CO 2	K4, K5, K6
1. Column chromatography of leaf and flower extract.		
2. TLC – Separation of triglycerides.		
3. Paper Chromatography – Separation of amino acids.		
4. Tests for carbohydrates and amino acids.		

Text Books

- 1. N. S. Gnanapragasam & G. Ramamurthy Organic Chemistry Lab manual, 3rd edn, S. Viswanathan Co. Pvt. Ltd., 2002.
- 2. Jeyavathana Samuel, Chemistry Practical Book, G. G. Printers, Chennai, 2012.
- 3. Geetha Swaminathan and Mary George, Laboratory Chemical Methods in Food Analysis 2nd edn, Margham Publications, Chennai-17,, 2017.

Suggested Readings

- 1. J.N. Gurthu and R. Kapoor, Advanced Experimental Chemistry S. Chand and Co., New Delhi 2nd edn., 1987.
- 2. S. Sundaram, P. Krishnan and P.S. Rashaan, Practical Chemistry, S. Viswanathan Pvt. Ltd, Chennai, 2002.
- 3. B.S. Furniss, A.J. Hannaford, P.W. G. Smith and A.R. Tatchell, Vogel's Text Book of Practical Organic Chemistry., 5th edn , Pearson Edition , 2005.

Web Resources

- 1 <u>https://bit.ly/3B7jbxt</u>
- 2 <u>https://bit.ly/3p3IHkG</u>

COs	CO Description	Cognitive Level
CO 1	Recall and explain the principles of quantitative analysis.	K1, K2
CO 2	apply the knowledge on the concepts of quantitative analysis to estimate biomolecules.	К3
CO 3	exercise various analytical skills and techniques learned to analyze biological molecules	K4
CO 4	Formulate appropriate separation techniques for the isolation of biologically important compounds.	K5
CO 5	assess and apply the analytical techniques to understand the various biological processes.	K6

Course	Code	UCH 3801		
Course	Title	CHEMISTRY IN EVERYDAY LIFE		
Credits		02		
Hours/	Week	03		
Catego	ry	Non Major Elective (NME)		
Semest	er	III		
Regula	tion	2019		
3. 4.	 This course explains the characteristics and classification of fuels, soils and fertilizers. This course provides an insight on the importance of various food laws, food standards in India, preservation of food, water treatment and prevention of pollution. 			
Course	Objective	S		
1.	To highlig compositi	ght the importance of calorific values of fuels, classification of fuels and their on.		
2. To learn the cla		ne classification of soil and understand the role of different fertilizer and pesticides.		
3.				
4. To learn about hardness and treatment of hard water.				
5.	-	n the concepts of environmental pollution, types, sources and its effects on and human health.		

Prerequisites	Basic knowledge of Chemistry

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL	
Ι	 Fuels 1.1 Fuels: calorific value, characteristics, classification. Solid fuels-coal and types. 1.2 Liquid fuels: petroleum-fractional distillation- fractions and their uses, octane number, cetane number, TEL, gaseous fuel-composition and uses of CNG, LPG and 	7	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6	
	biogas.				

II	Agrochemistry	8	CO 1	K1, K2, K3,
	2.1 Soil: classification- alluvial, black, laterite	0	CO 1 CO 2	K4, K5, K6
	and red soils. Soil fertility-permanent and		CO 2	1X+, 1X5, 1X0
	temporary.		CO 4	
	2.2 Fertilizers: requisites, nitrogenous,		CO 5	
	phosphatic, potash, NPK and bio		005	
	fertilizers, organic manures, effect of			
	excess fertilization. Pesticides,			
	Classification- Insecticides, Fungicides,			
	Herbicides, Acaricides, Rodenticides -			
	BHC, aldrin, pyrethrin, nicotine-functions			
	only, bio pesticides.			
III	Food Safety and Quality	8	CO 1	K1, K2, K3, K4,
	3.1 Introduction to basic components of food-		CO 2	K5, K6
	nutrients and their functions. Food		CO 3	
	adulteration- intentional and incidental		CO 4	
	adulterants, food laws- prevention of food		CO 5	
	adulteration act, Essential Commodities			
	Act, BIS, AGMARK and FSSAI.			
	3.2 Food spoilage and food preservation:			
	principles and methods-temperature,			
	preservatives, dehydration, pressure and			
	irradiation. (Demonstration: Identification			
	of food adulterants in milk, turmeric			
	powder, chilli powder, honey and coconut			
	oil)			
IV	Water Treatment	8	CO 1	K1, K2, K3,
1,	4.1 Sources of water, potability of water, hard	0	CO 2	K4, K5, K6
	and soft water, temporary and permanent		CO 3	11, 113, 110
	hardness, disadvantages of hard water in		CO 4	
	_		CO 4 CO 5	
	domestic and industrial purposes.		05	
	4.2 Treatment of water: disinfection by ozone			
	and bleaching powder, desalination-			
	reverse			
	osmosis, WHO and BIS specification of			
	drinking water (TDS, hardness, pH,			
	dissolved oxygen)			
V	Environmental pollution	8	CO 1	K1, K2, K3,
	5.1 Air and noise pollution: Types and sources,		CO 2	K4, K5, K6
	effects on ecosystem and human health.		CO 3	
	5.2 Water and soil pollution: Types and		CO 4	
	sources, effects on ecosystem and human		CO 5	
	health, eutrophication and its control,			
	effects of pesticides and heavy metals on			
	ecosystem and human health,			
	biomagnification, preventive measures of			
	pollution.			
L	-			

Text Books

- 1. P. C. Jain, M. Jain (2015) Engineering chemistry, Dhanpat Rai publications, 15th edition.
- 2. B. Srilakshmi (2003) Food Science, New age International Pvt.Ltd. Publishers, 3rdedition.
- 3. B. K. Sharma (1994) Industrial Chemistry: Including Chemical Engineering, Goel Publishing house, Meerut, India, 1st edition.
- 4. G.T. Austin, Shreve's (1984) Chemical Process Industries, Tata Mc-Graw-Hill, 5th edition.
- 5. B.A. Yagodin (1976) Agricultural Chemistry, Mir Publishers (Moscow), Vol.2.
- 6. Thankamma Jacob (1976) Food adulteration, Macmillan Company India, 1st edition.

Suggested Readings

- 1. G.D.Gem Mathew (2013) Chemistry in everyday life, Vishal Publishing Co. 1st edition.
- 2. K. Bagavathi Sundari (2006) Applied Chemistry, MJP Publishers, 1st edition.
- 3. Mary George and Geetha Swaminathan (2002) Laboratory Chemical Methods in Food Analysis, Margham Publications, Chennai, 2ndedition.
- C. A. Heaton (1996) An Introduction to Industrial Chemistry, Springer Science & Business Media, 3rdedition.
- 5. A.K.De (1987) Environmental Chemistry, Wiley eastern Ltd, 2ndedition.
- 6. N. S. Subbarao (1982) Biofertilizers in agriculture, Oxford and IBH publishing Co.: New Delhi, 3rd revised edition.

Web Resources

- 1. <u>https://bit.ly/3EbVyWf</u>
- 2. <u>https://bit.ly/3BefWEE</u>
- 3. https://bit.ly/3C7Xe2t
- 4. <u>https://bit.ly/3Gfjdaf</u>
- 5. <u>https://bit.ly/3pyJwCm</u>

COs	CO Description	Cognitive Level
CO 1	To understand and recall the basic definitions related to fuels, fertilizers, food safety, water treatment and environmental pollution.	K1, K2
CO 2	To classify and illustrate the characteristics of fuels, fertilizers, food, water and pollution.	К3
CO 3	To analyze the principles of chemistry in determining the fuel composition, functions of fertilizers, food adulteration, water hardness and preventive measures of pollution.	K4
CO 4	To assess the importance of fuels, agrochemistry, food safety, water treatment and pollution control.	К5
CO 5	To summarize the significance of fuels, fertilizers, food preservation, specifications of drinking water and preventive measures of pollution.	К6

Course Code	UCH 4401
Course Title	APPLIED CHEMISTRY FOR MATHS
Credits	02
Hours/Week	03
Category	Allied Optional (AO) - Theory
Semester	IV
Regulation	2019

Course Overview

- 1. The aim of the course is to give basic knowledge about the handling of chemicals, various titrimetric methods, biomolecules, consumer protection, environment and its related problems.
- 2. This course develops an attitude of concern for the storage and handling of various chemicals in the laboratory and environment.
- 3. This course will explore carbohydrates, lipids, amino acids and vitamins.
- 4. This course appreciates the central role of chemistry in the environment and in consumer products.
- 5. This course lays a firm foundation in the fundamentals of water treatment and pollution controlling measurements.

Course Objectives

- 1. To understand the basics of handling and storage of chemicals.
- 2. To learn about standard solutions, types of titrations and indicators.
- 3. To have a deep knowledge about lipids, amino acids, carbohydrates and vitamins.
- 4. To know the ingredients of various consumer products and consumer protection.
- 5. To apply the knowledge of water treatment and pollution control in day to day life.

Prerequisites	Basic knowledge of Chemistry	

SYLLABUS

UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL
Ι	Handling of chemicals and data	08	CO 1	K1, K2, K3,
	1.1 Safety and hygiene in the Chemistry Lab:		CO 2	K4, K5, L6
	Storage and handling of chemicals, handling		CO 3	
	of acids, ethers, toxic and poisonous		CO 4	
	chemicals. Antidotes, threshold vapour		CO 5	
	concentration and first aid procedures.			
	Material Safety Data Sheet (MSDS).			
	1.2 Error in chemical analysis: Accuracy and			
	precision, absolute and relative errors.			
	Methods of eliminating or minimizing errors.			
	Precision: mean, median, average deviation,			
	standard deviation and coefficient of			
	variation. Significant figure and its relevance.			

II	Titrimetric Methods of Analysis	08	CO 1	K1, K2, K3,
	 2.1 Methods of expressing concentration of solutions- Molarity, Molality, Normality, Mole Fraction, ppm and ppb. Principle of titrimetric analysis- End point and equivalence point, Primary and secondary standards – Prerequisites and examples. 2.2 Acid-base and complexometric titrations principle, choice of indicators-Phenolphthalein, methyl orange and Eriochrome black-T (structures not needed). 	08	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6
III	Biomolecules	08	CO 1	K1, K2, K3,
	 3.1 Lipids and amino acids: classification of lipids, iodine value and saponification value of oils. Essential fatty acids. Classification of amino acids (acidic, basic, neutral) isoelectric point, zwitterion, essential and non-essential amino acids (structure not needed). 3.2 Carbohydrates and vitamins: classification of carbohydrates, reducing and non-reducing sugar, tests for carbohydrates- Benedict's test, Fehling's test, Molish's test. Vitaminswater and fat soluble-Sources, functions and deficiency. 		CO 2 CO 3 CO 4 CO 5	K4, K5, K6
IV	Consumer products	08	CO 1	K1, K2, K3,
	 4.1 Soaps and cosmetics - ingredients and functions, cleansing action of soap. Comparison of soaps and detergents. Shampoos- ingredients and functions, types: anti-dandruff, herbal and anti-hair fall shampoos. Cosmetics: Ingredients; face cream, sunscreen, skin bleaching agents and anti perspirants. 4.2 Consumer Protection: rights, responsibilities, consumer forum, consumer protection Act (2019), Consumer protection in India, consumer redressal forum. 		CO 2 CO 3 CO 4 CO 5	K4, K5, K6
V	Water treatment and pollution control	07	CO 1	K1, K2, K3,
	 5.1 Water treatment: sources of water, hard and soft water, hardness of water, Disadvantages of hard water. Purification process- reverse osmosis, activated charcoal treatment. Disinfection-ozone, UV, chlorination, BIS specification of drinking water. 5.2 Pollution and its control: Air pollution, effect of air pollution- acid rain and greenhouse 		CO 2 CO 3 CO 4 CO 5	K4, K5, K6

effect, ozone depletion. Water pollution- significance of dissolved oxygen (DO), biological oxygen demand (BOD) and		
Chemical oxygen demand (COD).		

Text Books

- 1. S. Usharani (2008) Analytical Chemistry, Macmillan India Limited, I Edition.
- 2. P.C. Kamboj (2014) Advanced University Practical Chemistry, Part-I, Vishal Publishing Co.
- 3. S.C. Rastogi (2007) Biochemistry, Tata McGraw Hill publishers, II Edition.
- 4. W.Sawyer (2000) Experimental cosmetics, Dover publishers, I Edition.
- 5. P. C. Jain, M. Jain (2015) Engineering chemistry, Dhanpat Rai publications, XV Edition.

Suggested Readings

- 1. K. Bagavathi Sundari (2006) Applied Chemistry, MJP Publishers, I Edition.
- 2. A.K. De (1987) Environmental Chemistry, Wiley eastern Ltd, II Edition.
- 3. C. A. Heaton (1996) An Introduction to Industrial Chemistry, Springer Science & Business Media, III Edition.

Web Resources

- 1. <u>https://bit.ly/3juuBFq</u>
- 2. https://bit.ly/3AJqOKj
- 3. https://bit.ly/3aFN8tS
- 4. https://bit.ly/3DMzO30

COs	CO Description	Cognitive Level
CO 1	To understand and recall the basics of storage and handling of chemicals, different titrimetric methods, importance of biomolecules, ingredients in soaps and detergents, water treatment and pollution control.	K1,K2
CO 2	To illustrate the errors in chemical analysis, classification of biomolecules, ensuring consumer's rights and responsibilities, and determining the solution's concentration, water hardness and preventive measures of pollution.	К3
CO 3	To analyse the principles of chemistry in identifying the methods of minimizing errors, requirements of primary and secondary standard solutions, tests for carbohydrates, cleansing action of soap, purification of drinking water.	K4
CO 4	To assess the importance of lab safety, choice of indicators, functions and deficiency of vitamins, consumer protection in India, water treatment and pollution control.	K5
CO 5	To Specify and summarize the importance of Material Safety Data Sheet (MSDS) and antidotes, types of titrimetric analysis, biomolecules, consumer protection and effects of air pollution.	К6

UCH 4402
APPLIED CHEMISTRY PRACTICAL FOR MATHS
01
02
Allied optional (AO) - Lab
IV
2019

Course Overview

1. This course helps the students to get trained in the preparation of solutions, safe handling of chemicals and apparatus.

- 2. The hands-on training gained in performing the experiments would cultivate experimental skill.
- 3. The course shapes the students' frame of mind towards the scientific interpretation of data and helps them to improve their efficiency for societal developments.
- 4. This laboratory experience gained through this paper would develop skills in scientific methods of planning, executing and reporting the experimental data.
- 5. The analytical approach followed in quantitative techniques would certainly develop technical skills for nation development.

Course Objectives:

- 1. To understand the principle of volumetric analysis and the significance of indicators in titrations.
- 2. To estimate the amount of glucose using Benedict's method and the hardness of water using a complexometric method.
- 3. To determine acid value and saponification value of an oil.
- 4. To understand the concepts involved in acidimetry, alkalimetry, permanganometry, and iodometry.
- 5. To learn the preparation of a few consumer products on a small scale.

Prerequisites	Basic knowledge of volumetric analysis

EXPT/S.NO	CONTENT	HOURS	COs	COGNITIVE LEVEL
I	 Estimation of sodium hydroxide (Acidimetry). Estimation of oxalic acid (Alkalimetry). Estimation of sodium carbonate (Acidimetry). Estimation of Ferrous Ammonium Sulphate (Permanganometry). Estimation of oxalic acid (Permanganometry). 	26	CO 1 CO 2 CO 3 CO 4 CO 5	K1, K2, K3, K4, K5, K6

 7. Estimation of magnesium (Complexometry). 8. Determination of total hardness of water 9. Estimation of saponification value of oil. 10. Estimation of acid value of oil. 11. Estimation of glycine. 12. Estimation of glucose by Benedict's method. 13. Estimation of Ascorbic acid 	6.	Estimation of KMnO ₄ (Iodometry).	
 B. Determination of total hardness of water 9. Estimation of saponification value of oil. 10. Estimation of acid value of oil. 11. Estimation of glycine. 12. Estimation of glucose by Benedict's method. 	7.	Estimation of magnesium	
 water 9. Estimation of saponification value of oil. 10. Estimation of acid value of oil. 11. Estimation of glycine. 12. Estimation of glucose by Benedict's method. 		(Complexometry).	
 9. Estimation of saponification value of oil. 10. Estimation of acid value of oil. 11. Estimation of glycine. 12. Estimation of glucose by Benedict's method. 	8.	Determination of total hardness of	
oil. 10. Estimation of acid value of oil. 11. Estimation of glycine. 12. Estimation of glucose by Benedict's method.		water	
 Estimation of acid value of oil. Estimation of glycine. Estimation of glucose by Benedict's method. 	9.	Estimation of saponification value of	
 Estimation of glycine. Estimation of glucose by Benedict's method. 		oil.	
12. Estimation of glucose by Benedict's method.	10.	Estimation of acid value of oil.	
method.	11.	Estimation of glycine.	
	12.	Estimation of glucose by Benedict's	
13 Estimation of Ascorbic acid			
	13.	Estimation of Ascorbic acid	
(Vitamin C).		(Vitamin C).	
14. Demonstration of preparation of soap	14.		
and pain balm		and pain balm	

Text Books

- 1. Geetha Swaminathan and Mary George, Laboratory chemical methods in food analysis, Margham Publications, 2002, Second edition.
- 2. Jeyavathana Samuel, Chemistry Practical Book, G. G. Printers, Chennai, 2012, New edition.
- 3. S. Sundaram, P. Krishnan and P.S. Raghavan, Practical Chemistry, S. Viswanathan Co. Pvt.1996.
- 4. V K Ahluwalia, Sunita Dhingra, Sunita Dhingram, College Practical Chemistry, Universities Press, 2005.
- 5. P.C. kamboj, Advanced University Practical Chemistry, Part I, Vishal Publishing Co. 2014.

Suggested Readings

- 1. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas and B. Sivashankar, Vogel's Textbook of quantitative chemical Analysis, Pearson education, Chennai, 2014, Sixth edition.
- 2. Peter McPherson, Practical Volumetric Analysis, Royal Society of Chemistry, 2015.
- 3. R. Shobha, M. Banani, Essentials of Analytical Chemistry, Pearson, 2017.
- 4. V. Venkateswaran, R. Veeraswamy and A.R. Kulandaivelu, Basic Principles of Practical Chemistry, 2nd edn. S. Chand Publications, New Delhi, 2004.

Web Resources

- 1. https://bit.ly/2XFOq56
- 2. https://bit.ly/3m3rMwS
- 3. <u>https://bit.ly/3m4ua6C</u>

COs	CO Description	Cognitive Level
CO 1	To recall the principle of the volumetric analysis and the significance of indicators.	K1, K2
CO 2	To perform the titrations of different types based on the relevant procedure.	К3
CO 3	To observe systematically the end points of the titration and record the concordant titre values.	K4
CO 4	To determine quantitatively the concentration and weight of the given analyte.	K5
CO 5	To consolidate and present the results of the experiments scientifically.	K6

Course Outcomes (COs) and Cognitive Level Mapping

Course Code	UCH 4403	
Course Title	FOOD CHEMISTRY	
Credits	02	
Hours/week	03	
Total Hours	45	
Category	Allied Optional (AO)-Theory	
Semester	IV	
 This course deals with the constituents of food and edible materials with a chemistry perspective. It discusses the classification of nutrients and their impact in food processing. The course describes the role of food preservatives and sweeteners. It outlines the additives used in food materials to increase taste, flavor, color and stability of food materials It also deliberates the adulterants used in food materials and measures to be taken for food safety. 		
 To identify To analyze To assess the 	and and recall the classification of nutrients. the impact and significance of nutrients. various chemical reactions involved in food processing. he usage of additives in food materials. the adulterants used in food and to determine the quality of food materials	

5. To critique the adulterants used in food and to determine the quality of food material

1	
Prerequisites	Basic knowledge of Food chemistry and Biochemistry

SYLLABUS

UNIT	CONTENTS	HOURS	COs	COGNITIVE LEVEL
Ι	Macronutrients	9	CO1	K1, K2, K3,
	1.1 Macronutrients - Definition, types and functions.		CO2	K4, K5, K6
	Carbohydrates-Maillard reaction, caramelization		CO3	
	and pyrolytic reaction. Food applications of		CO4	
	polysaccharides-carboxymethyl cellulose, Guar		CO5	
	gums, Xanthan gums, Carrageenan, Pectin and			
	Gum Arabic. Effect of cooking on carbohydrates.			
	1.2 Proteins: Denaturation, hydrolysis and cross-			
	linking reactions. Effect of cooking – steaming or			
	cooking under pressure of legumes. Wheat			
	protein- Detoxification and dough forming.			

II	Micronutrients	7	CO1	K1, K2, K3,
	2.1 Micronutrients-Definition, types and functions.	,	CO1	K4, K5, K6
	Vitamins - Bio availability, factors affecting the		CO3	,,
	stability, toxicity, restoration, enrichment and		CO4	
	fortification. Anti-oxidants -Vitamin C and E.		CO5	
	2.2 Effect of different methods of cooking -		005	
	-			
	blanching, boiling, microwaving, and steaming			
	on vegetables, fruits-dehydrated fruits, canned			
	fruit juices.			
	2.3 Minerals. Recommended dietary allowances,			
	bioavailability, effect of processing,			
	fortification, chemical and functional properties			
	of calcium, iron, copper, iodine, fluorine, sodium			
	and potassium in food.			
III	Food Preservatives and sweeteners	7	CO1	K1, K2, K3,
	3.1 Food additives: Definition, principle, types and		CO2	K4, K5, K6
	need for food additives. Preservatives-		CO3	
	Definition, Class I and II, functions of natural		CO4	
	and chemical preservatives. Anti- microbial		CO5	
	agents-sulphites and nitrites.			
	3.2 Sweeteners: Definition, types and properties.			
	Nutritive and non-nutritive sweeteners-			
	functions and limitations in food processing-			
	cyclamate, saccharin, aspartame, alitame,			
	acesulfame K and sucralose. Bio-sweeteners-			
	Stevia.			
IV	Unit 4: Food Colorants and flavoring agents	8	CO1	K1, K2, K3,
1,	4.1 Colorants: Natural and synthetic colorants,	0	CO1	K4, K5, K6
	limitations. Pigments in animals and plants		CO3	11, 112, 110
	tissues-myoglobin, met myoglobin, deoxy		CO3	
			CO4 CO5	
	myoglobin, sulpha myoglobin, chlorophyll,		COS	
	carotenoids, anthocyanins and flavonoids.			
	Factors affecting stability, and color change on			
	processing.			
	4.2 Flavoring Agents: Natural, nature identical and			
	artificial. Flavor enhancers–(MSG) astringency			
	(tea and Red wine) and pungency (chilli pepper,			
	Black pepper and Ginger), Fish food flavors			
	and thermally induced flavors.			
V	Unit 5: Food Adulterants & Food Safety	8	CO1	K1, K2, K3,
	5.1 Food Adulterants-Definition, classification,		CO2	K4, K5, K6
	general health effects. Contamination-		CO3	
	chemicals (melamine, acrylamide), pesticides		CO4	
	and insecticides (DDT, Chlorpyrifos-		CO5	
	methyl, Malathion, and Dieldin), Detection and			
	prevention.			
	5.2 Quality control: Specifications and standards,			
	· · · · · · · · · · · · · · · · · · ·			

	PFA, FPO, FDA, drug license, WHO standards, BIS specifications, packing and label requirements, AGMARK, and FSSAI.
Books	for Reference
1.	De Man, John M., Principles of Food Chemistry, 3rdedn, Springer, 1999.
2.	M. Shafiur Rahman, Handbook of Food Preservation, 2 nd edn, CRC Press, Taylor &
	Francis Group, 2007.
3.	Potter, Norman N., Hotchkiss, Joseph H., Food Science, 5thedn, Springer science media,
	New York. 1998.
4.	Hayes P.R and S.J. Forsythe, Food Hygiene, Microbiology and HACCP, 3rdedn, Springer
	Science, 2010.
Web R	esources
1.	https://bit.ly/2ZeqI0F
2.	https://bit.ly/3pw9LcO
3.	https://bit.ly/3pvMIPo
4.	https://rsc.li/3juVitz

СО	CO Description	Cognitive Level
CO 1	understand and recall the basic concepts of food chemistry.	K1, K2
CO 2	determine the types of nutrients and important chemical reactions involved in food processing.	К3
CO 3	analyse the different constituents, additives and adulterants in food.	K4
CO 4	formulate the structure of various components present in food, additives and adulterants.	К5
CO 5	evaluate and ensure the quality and safety of food materials.	K6

Course	e Code	UCH 4404				
Course Title		FOOD CHEMISTRY PRACTICAL				
Credit	s	01				
Hours	/Week	02				
Catego	ory	Allied Optional (AO) –Practical				
Semes	ter	IV				
Regula	ation	2019				
Course	e Overview					
1.	The specific	aim of the laboratory course is to provide the fundamental knowledge of				
	handling the	apparatus and chemicals.				
2.	This paper pa	ovides the methods to check the quality of various food samples.				
3.	This course	discusses the separation and determination of phytochemicals from the plant				
	extracts.					
4.		so provides the hands-on experience to detect the food adulterants in various				
	samples.					
5.	The outcome analysis.	e of the experimental results will be evaluated by quantitative and qualitative				
Course	e Objectives					
1.	To distinguis	sh the basic glass wares and volumetric apparatus.				
2.	To understar	nd the importance of recording the data and calculations.				
3. To detect and analyse the various food samples by titration and simple identification methods.						
4.	To acquire k	nowledge in the use of chromatographic techniques.				
5.	To recomme	nd the healthy and quality food products to the society.				
Prereg	luisites	Basic knowledge of chemistry				

SYLLABUS

	SILLADUS			
S.NO	EXPERIMENTS	HOURS	COS	COGNITIVE
				LEVEL
1.	Qualitative Experiments	12	CO1	K1, K2, K3,
	1. Detection of macronutrients in food.		CO2	K4, K5, K6
	(Carbohydrate, protein, fat and oil)		CO3	
	2. Detection of phytochemicals in plant		CO4	
	extracts.		CO5	
	(Alkaloids, flavonoids, saponins,			
	phenol, steroids, glycosides and tannin)			
	3. Detection of natural and synthetic			
	colorants in food.			
	4. Detection of fortified iron content in			
	cereal breakfast.			
	5. Detection of adulterants in milk and			
	milk products. (Cane sugar, Starch,			

		colluloco Uroo culmbotos Codium			
		cellulose, Urea, sulphates, Sodium			
		chloride, nitrates,			
		Hydrogen peroxide, vanaspati,			
		formalin, and detergent in milk and			
	6	milk products)			
	6.	Detection of adulterants in oils,			
		sweetening agents and miscellaneous			
		food components.			
		(Miscellaneous food components -Tea,			
		coffee, turmeric powder, chili powder,			
	_	sugar, jaggery and flour)			
	7.				
		chromatographic technique.			
2.	-	itative Experiments:	14	CO1	K1, K2, K3,
	1.	Estimation of peroxide value of an oil.		CO2	K4, K5, K6
	2.			CO3	
		different fruit juices.		CO4	
	3.	Estimation of wet gluten content in		CO5	
		wheat flour.			
	4.	Estimation of iodine content in iodate			
		salt.			
	5.	Estimation of calcium in milk by			
		complexometric titration.			
	6.	Estimation of ferrous ion by			
		permanganometry method.			
	7.	Estimation of available CO ₂ in baking powder			
	8	Determination of percentage of acetic			
	0.	acid in vinegar.			
	9	Identification and determination of food			
).	colors in food products by TLC / Paper			
		chromatography.			
	10	Determination of DO/COD/BOD of			
	10.	water sample. Detection of			
		phytochemicals in plant extracts.			
		(Alkaloids, flavonoids, saponins,			
		phenol, steroids, glycosides and tannin)			
		priction, steroids, grycosides and taninin)			
Text Bool	KS				
1. No	eilson Sı	zanne S (2003) Food analysis.Plenum Pub	lishing Corpo	oration, U	J.S.A.
		manual -Methods for analysis of foods - T	0 1		
		I D Sharma and M S Dathania (2007)			

3. B. R. Puri, L. R. Sharma and M. S. Pathania (2007) Principle of Physical Chemistry 38th edition S. Nagin Chand and Co.

4. Geetha Swaminathan andMary George S. (2010) Laboratory Chemical Methods in Food Analysis, Margham Publications, 3rd edition.

5. N.S. Gnanapragasam and G. Ramamurthy (2002) Organic Chemistry – Lab manual S. Viswanathan Co. Pvt.

Suggested Readings

- 1. S.Ranganna, (1987) Manual of analysis of fruits and vegetable products Tata McGraw Hill Publishing company Ltd, New Delhi, 2nd edition.
- 2. Manual of methods of Analysis of foods, Fssai manual
- 3. B.S. Furniss, A.J. Hannaford, P.W. G. Smith and A.R. Tatchell, (2005) Vogel's Text Book of Practical Organic Chemistry. Pearson Edition, 5th edition.

Web Resources

1. https://bit.ly/3mY0dnL

СО	CO Description	Cognitive Level
CO 1	To recall and explain the principle involved in each experiment.	K1, K2
CO 2	To examine and determine the different components present in the food samples.	К3
CO 3	To estimate the components, present in food samples quantitatively and minimize the experimental errors.	K4
CO 4	To decide and recommend a suitable procedure for the analysis of various food products.	K5
CO 5	To create the food awareness and food safety procedures.	K6

Course Code	UCH 4801					
Course Title	BASIC CLINICAL AND PHARMACEUTICAL CHEMISTRY					
Credits	02					
Hours/Week	03					
Category	Non Major Elective (NME) – Theory					
Semester	IV					
Regulation	2019					
 The different Understand today life. Inputs on press Skill of the reactions of 	6					
 To demonst To develop To learn the 	and the safe methods of handling of chemicals used in clinical practice. The principles of drug action and testing of drugs. clinical and analytical skills. e effective usage of drugs. the knowledge in the preparation of drugs and clinical testing reagents.					
Prerequisites	Basic knowledge of pharmaceutical chemistry					

-	-			-
Prerequisites	Basic knowledg	e of pharmad	ceutical chemistry	

	SYLLABUS								
UNIT	CONTENT	HOURS	COs	COGNITIVE LEVEL					
Ι	CLINICALHYGIENEANDBIOCHEMICAL ANALYSIS1.1. Definition of health. Role of WHO1.2. Sterilization of surgical instruments1.3. Disinfectants, antiseptics, sanitation1.4. Biochemical analysis of acids, alkalis, arsenic and mercury compounds.	06	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6					
Π	 INTRODUCTION TO DRUGS 2.1 Definitions of pharmacology, pharmacophore, pharmacodynamics, pharmacokinetics, API (active pharmaceutical ingredients) 2.2 Types of drugs and their functions: Depressant drugs (special reference to sedatives and hypnotics). Anticonvulsant 	10	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4, K5, K6					

SVLL ARUS

drugs (sodium valproate, hydantoins). Narcotic analgesics (only morphine	
compounds). Testing of drugs: biological	
variation, screening and toxicity. Use of	
pharmacoepia and therapeutic index.	
	K2, K3,
	, K5, K6
p - amino - phenol derivatives). Muscle CO3	, KJ, KU
relaxants. Acting at neuromuscular junction CO4	
(d – tubocurarine chloride). Acting at spinal CO5	
cord alone (glycerylguaiacolate, diazepam).	
3.2 Antibiotics (penicillin, streptomycin,	
tetracyclin, chloramphenicol)	
Cardiovascular drugs-stent, nitrates, beta	
blockers (propranalol and atinelol),	
triglycerides. Anti-cancer drugs taxol,	
cisplatin.	
	K2, K3,
	, K5, K6
4.1 Blood volume, blood groups, coagulation of CO3	, 110, 110
blood. Plasma lipo protiens.	
4.2 Blood pressure. Arteriosclerosis, diseases CO5	
affecting red cells: Hyperchromic and	
hypochromic anaemia	
4.3 Blood transfusion. Blood sugar and diabetes.	
4.4 Knowledge of measuring blood	
pressure, influence of blood pressure.	
4.5 blood sugar control levels and medicine used	
to control blood pressure and blood sugars.	
V TRADITIONAL SYSTEMS OF MEDICINE 09 CO1 K1,	K2, K3,
5.1 Sources of drugs (e.g. quinine, reserpine, CO2 K4	, K5, K6
atopside and d – tubocurarine) from Indian CO3	
medicinal plants. Introduction to Siddha, CO4	
Unani, Ayurvedha, Homeopathy. CO5	
5.2 Examples of traditional medicine.	
Text Books	
1. Jayashree Ghosh, A text book of Pharmaceutical Chemistry, 1999 Edition., S.Cha	and and Co.
Ltd., 1999.	
2. S.C. Rastogi. Biochemistry, Tata McGraw Hill Publishing Co., 2019 Edition,	New Delhi
1993. 2 S. Ashertash Kan Madisinal Chamisters Willow Footant Limited New Dalki, N	1
 S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New Delhi., N 1993 	ew edition,
4. M.Z. Abdin Y.P. Abrol, Traditional Systems of Medicine, Narosa, Publishers, I	New Delhi,
New Edition, 2006.	
Suggested Readings	
1. O.Le Roy, Natural and synthetic organic medicinal compounds, Ealemi Publish	ners, Latest
edition, 1976.	

- 2. B.L. Oser, Hawk's Physiological Chemistry, 14th edition, Tata McGraw Hill Publishing Co., New Delhi, 1965.
- 3. O. Kleiner and J. Martin, Bio-Chemistry, Prentice-Hall of India (P) Ltd, New Delhi 1974.
- 4. Graham L Patrick, an Introduction to Medicinal Chemistry, 5th Edition, Oxford University Press, Chennai, 2017.
- 5. Ilango, Valentina, Text Book of Medicinal Chemistry volume- I & II, Keerthi Publishers, Chennai, 2017.

Web Resources

- 1. https://bit.ly/3B5YQIP
- 2. <u>https://bit.ly/2ZgFjbf</u>
- 3. <u>https://bit.ly/3CkzHve</u>
- 4. <u>https://wb.md/3GedHF2</u>
- 5. <u>https://bit.ly/3npsT9F</u>
- 6. <u>https://bit.ly/3b4NOcc</u>
- 7. https://wb.md/3FSjEHh

СО	CO Description	Cognitive level
CO 1	To understand the safe methods of handling of chemicals used in clinical chemistry.	K1, K2
CO 2	To explain and apply the theories of chemical action in the various common drugs.	К3
CO 3	To recognize the basis of physiological functions and to know drug action on diseases.	K4
CO 4	To apply the biochemical techniques to identify the drug action.	К5
CO 5	To classify drugs and to assess the various diagnosis methods.	K6

CL AND CO BASED CIA QUESTION PAPER FORMAT FOR UG THEORY COURSES MC, AR, AO, MS, ME, GL and NME* (excluding other languages)

SECTION	MARKS	Q. NO	K1	K2	К3	K4	K5	K6
	Answer ALL	1	+					
	$(6 \times 1 = 6)$	2	+					
		3	+					
		4		+				
		5		+				
		6		+				
В	Answer 1 out of 2 (1 x 6 = 6)	7			+			
		8			+			
С	Answer 1 out of 2 (1 x 6 = 6)	9				+		
		10				+		
D*	Answer 1 out of 2	11					+	
	$(1 \times 12 = 12)$	12						+
No. of CL ba	No. of CL based Questions with Max. marks		3 (3)	3 (3)	1 (6)	1 (6)	1 (12)	1 (12)
No. of CO based Questions with Max. marks		CO)1	CO 2	CO 3	CO 4	CO 5	
			6 ((6)	1 (6)	1 (6)	1 (12)	1 (12)

• MC - Major Core, AR – Allied Required, AO – Allied Optional, MS - Major Skill, ME - Major Elective, GL - General Languages, NME – Non- Major Elective.

• Section A could have one or more of the following: Fill in the blanks, True or False, Match the following, Definition, Comment on, Reason out etc., But, K1 and K2 should carry equal weightage.

• In Section D students have choice between K5 and K6. III Component Assessment carries 40% of CIA and the assessment(s) should be for cognitive levels K1 to K4 and all should carry equal weightage.

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 60034 DEPARTMENT OF CHEMISTRY FIRST CONTINUOUS ASSESSMENT TEST, AUGUST 2021 UCH 5501 ORGANIC FUNCTIONAL GROUPS-II (MC)

III BSc Chemistry Time: 90 minutes

Date: Max. Marks: 30

SECTION A

	SECTION A				
Answer A	LL questions in one or two sentences (6 x	1 = 6 Mark	(s)		
1.	Name the following compounds as per IUPAC system.	K1	CO1		
2.	(i) C ₆ H ₅ CHO (ii) C ₆ H ₅ COCH ₃ State the conditions for Wolf-Kishner reduction.	K1	CO1		
3.	List any two hydride transfer reagent.	K1	CO1		
4.	Classify the molecular rearrangements.	K2	CO1		
5.					
	Methyl-, allyl-, benzyl-, secondary, tertiary-				
6.	Explain the importance of isotopic labelling study.	K2	CO1		
	SECTION B				
Answer a	ny ONE of the following in 150 words	$(1 \times 6 = 6 N)$	larks)		
7.	Predict the product formation in the following reactions with mechanism.	K3	CO2		
	(i) Aldol condensation (ii) Cannizarro reaction				
8.	Explain the ring-contraction and ring-expansion reaction with an example.	K3	CO2		
	SECTION C	İ			
Answer a	ny ONE of the following in 150 words	$(1 \times 6 = 6 \text{ M})$	Marks)		
9.	Analyze the importance of LiAlH ₄ and NaBH ₄ with suitable example.	K4	CO3		
10.	Differentiate the mechanism of Curtius and Schimdt rearrangement.	K4	CO3		
	SECTION D	I			
Answer a	ny ONE of the following in 100 words (1	x 12 = 12 N	larks)		
11.	a. Evaluate Norrish Type I & II reactions with an example for each.	K5	CO4		
	b. Predict the mechanism of Perkin and Haloform reactions.				
12.	a. "Claisen rearrangement is a typical signatropic reaction". Justify	with K6	C05		
	suitable mechanism and explanation.				
	b. Write the mechanism of Hoffmann's rearrangement.				

CL AND CO BASED END SEMESTER EXAMINATION QUESTION PAPER FORMAT FOR UG THEORY COURSES MC, AR, AO, MS, ME and GL

SECTION		Q. NO	K1	K2	K3	K4	K5	K6
Α	Answer ALL (10 x 1 = 10)	1 (a to j)	+					
	Answer ALL (5 x 2 =10)	2 (a to e)		+				
В	$(2 \times 10 = 20)$	3			+			
	Answer 2 out of 4	4			+			
		5			+			
		6			+			
С	(2 x 10 = 20) Answer 2 out of 4	7				+		
		8				+		
		9				+		
		10				+		
D	(2 x 20 = 40) Answer 2 out of 4	11					+	
		12					+	
		13						+
		14						+
No. of CL based Questions with Max. marks		1 (10)	1 (10)	2 (20)	2 (20)	2 (40)	2 (40)	
No. of CO based Questions with Max. marks			CC)1	CO 2	CO 3	CO 4	CO 5
			2	(20)	2 (20)	2 (20)	2 (40)	2 (40)

* MC-Major Core, AR–Allied Required, AO–Allied Optional, MS-Major Skill, ME-Major Elective, GL-General Languages.

Section A could have one or more of the following: Fill in the blanks, True or False, Match the following, Definition, Comment on, Reason out, but K1 and K2 should carry equal weightage. In Section D students have choice between K5 and K6.

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 60034 DEPARTMENT OF CHEMISTRY END SEMESTER EXAMINATION, NOVEMBER 2021 UCH 5501 ORGANIC FUNCTIONAL GROUPS-II (MC)

III BSc Duration: 3 hrs Date:

Max. Marks: 100

 4. Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples. 5. Write the mechanism of Hoffmann's and Fries rearrangement. K3 CO2 		SECTION A		
(a) Which of the following compound will give Cannizzaro's reaction? Identify. K1 CO1 (a) CH3CH0 (b) CAH3CH2CH0 (c) CH3CH0 (d) CH3CH0 (e) CH3CH0 (f) CO1 (a) primary alcohol (b) secondary alcohol (c) tratraic acid when treated with Fenton's reagent gives	Answer	-		
(a) CH3CHO(b) CaH3CH2CHO(c) (CH3)3C-CHO(d) CH3CH2CHO(b)Grignard reagents add to the carbonyl group of ketones to form	1.) Mar	·ks)
(b)Grignard reagents add to the carbonyl group of ketones to form	(a)		K 1	CO1
(a) primary alcohol(b) secondary alcohol(c) tertiary alcohol(d) None of these(c)Tartaric acid when treated with Fenton's reagent gives				
(c)Tartaric acid when treated with Fenton's reagent givesK1C01(a) Dihyroxy fumaric acid (b) Oxalic acid (c) Tartonic acid (d) Mesooxalic acidK1C01(a) Dihyroxy fumaric acid (b) Malic acid (c) Salicylic acid?K1C01(a) Phthalic acid (b) Malic acid (c) Salicylic acid (d) Maleic acidK1C01(a) CH3COCH2COOC2H5(b) CH3COCH(R)COOC2H5K1C01(a) CH3COC(R2)COOC2H5(d) None of theseK1C01(a) Ketones(b) CTarboxylic acids(c) Heterocyclic compounds (d) All theseK1C01(a) Ketones(b) Carboxylic acids(c) Heterocyclic compounds (d) All theseK1C01(a) Ketones(b) Ph > H > Me (c) Me < H > Ph (d) Ph > Me > HK1C01(a) L > Me > Ph (c) Ph > H > Me (c) Me < H > Ph (d) Ph > Me > HK1C01(b) 2-ethenyl-2-methylbutanal(c) 2-ethenyl-2, 3-pentanediol treated with an acid is a 2-phenyl-2-methylpropanald) 2-phenyl-3-pentanoneK1C01(a) C-Mg (b) C-Zn (c) C-Li (d) C-CdK1C01(a) cp^{-1} (b) sp^{2} (c) sp^{3} (d) UnhybridizedK1C01(a) Convert salicylic acid into aspirin.K2C01K2C01(b) Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOC12) and sodium axide (NA3).K2C01(c)Show the mechanism of Cope and oxy-Cope reaction.K2C01(d)Indicate any two synthetic applications of cyanoacetic ester.K2C01(d)Indicate any two synthetic applications of cyanoacetic ester.K2C01 <td>(b)</td> <td></td> <td>K1</td> <td>CO1</td>	(b)		K 1	CO1
(a) Dihyroxy fumaric acid (b) Oxalic acid (c) Tartonic acid (d) Mesooxalic acid(d) Indicate which of the following is not a dicarboxylic acid? (a) Phthalic acid (b) Malic acid (c) Salicylic acid (d) Maleic acidK1(e) Indicate which one of the following is non-enolisable keto-ester? (a) CH ₃ COCH ₂ COOC ₂ H ₅ (b) CH ₃ COCH(R)COOC ₂ H ₅ (c) CH ₃ COC(R ₂)COOC ₂ H ₅ (d) None of theseK1(f) Acetoacetic ester may be used to prepare				~~ .
(d)Indicate which of the following is not a dicarboxylic acid? (a) Phthalic acid (b) Malic acid (c) Salicylic acid (d) Maleic acidK1CO1(a) Phthalic acid (b) Malic acid (c) Salicylic acid (d) Maleic acidIndicate which one of the following is non-enolisable keto-ester? (a) CH ₃ COC(H ₂ COOC ₂ H ₅ (b) CH ₃ COCH(R)COOC ₂ H ₅ (c) CH ₃ COC(R ₂)COOC ₂ H ₅ (d) None of theseK1CO1(a) CH ₃ COC(R ₂)COOC ₂ H ₅ (d) None of these(c) CH ₃ COC(R ₂)COOC ₂ H ₅ (d) None of theseK1CO1(a) Ketones (b) Carboxylic acids (c) Heterocyclic compounds (d) All theseK1CO1(a) H > Me > Phb) Ph > H > Me(M > H > He > HH(b)The major product obtained when 2-phenyl-2, pentanediol treated with an acid is a) 2-phenyl-2-methylbutanal (b) 3-phenyl-2-pentanoneK1CO1(i)Which metal-carbon bond will be most ionic? (a) C-Mg (b) C-Zn (c) C-Li (d) C-CdK1CO1(i)The hybridization state of Zn in dialkylzinc compound is	(c)		K1	CO1
(a) Phthalic acid (b) Malic acid (c) Salicylic acid (d) Maleic acidI(e)Indicate which one of the following is non-enolisable keto-ester? (a) CH3COCH2COOC2H5 (b) CH3COCH(R)COOC2H5 (c) CH3COC(R)COOC3H5 (d) None of theseK1CO1(a) Ketones (b) Carboxylic acids (c) Heterocyclic compounds (d) All theseK1CO1(a) Ketones (b) Carboxylic acids (c) Heterocyclic compounds (d) All theseK1CO1(a) Ketones (b) Carboxylic acids (c) Heterocyclic compounds (d) All theseK1CO1(a) H > Me > Ph b) Ph > H > Me c) Me > H > Ph d) Ph > Me > HK1CO1(h)The major product obtained when 2-phenyl-2,3-pentanediol treated with an acid is a) 2-phenyl-2-methylbutanal b) 3-phenyl-2-pentanone c) 2-ethyl-2-phenylpropanal d) 2-phenyl-3-pentanoneK1CO1(i)Which metal-carbon bond will be most ionic? (a) Sp ¹ (b) Sp ² (c) Sp ³ (d) UnhybridizedK1CO1(i)Convert salicylic acid into aspirin.K2CO1(a)Convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOC12) and sodium azide (NaN3).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain the mechanism of Michael addition and MPV reduction.K3CO2(f)Explain the mechanism of Michael addition and MPV reduction.K3CO2(g)Explain the mechanism of Michael addition and MPV reduction.K3CO2 </td <td>(L)</td> <td></td> <td>V1</td> <td>CO1</td>	(L)		V1	CO1
(e)Indicate which one of the following is non-enolisable keto-ester? (a) CH_3COCH_2COOC_2H_5 (b) CH_3COCH(R)COOC_2H_5 (c) CH_3COC(R_2)COOC_2H_5 (d) None of theseK1CO1(f)Acetoacetic ester may be used to prepare	(a)	c ·	K1	COI
(a) $CH_3COCH_2COOC_2H_5$ (b) $CH_3COCH(R)COOC_2H_5$ (c) $CH_3COC(R_2)COOC_2H_5$ (d) None of theseK1(f)Acetoacetic ester may be used to prepare		· · · · · · · · · · · · · · · · · · ·	17.1	001
(c) $CH_3COC(R_2)COOC_2H_5$ (d) None of theseK1(a) Acetoacetic ester may be used to prepare(a) Ketones (b) Carboxylic acids (c) Heterocyclic compounds (d) All these(g) The order migratory aptitude in pinacol-pinacolone rearrangement isK1(a) $H > Me > Ph$ b) $Ph > H > Me$ c) $Me > H = Ph$ d) $Ph > Me > H$ (h) The major product obtained when 2-phenyl-2,3-pentanediol treated with an acid is a) 2-phenyl-2-methylbutanal b) 3-phenyl-2-pentanoneK1(c) 2-ethyl-2-phenylpropanal d) 2-phenyl-3-pentanoneK1C01(a) C-Mg (b) C-Zn (c) C-Li (d) C-CdK1C01(a) c-Mg (b) C-Zn (c) C-Li (d) C-CdK1C01(a) sp ¹ (b) sp ² (c) sp ³ (d) UnhybridizedK2C01(a) Convert salicylic acid into aspirin.K2C01(b) Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl ₂) and sodium azide (NaN ₃).K2C01(c) Show the mechanism of Cope and oxy-Cope reaction.K2C01(d) Indicate any two synthetic applications of cyanoacctic ester.K2C01(e) Explain the mechanism of Michael addition and MPV reduction.K3C02 4. Explain the mechanism of Michael addition and MPV reduction.K3C02 4. Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acid swith suitable examples.K3C02 5. Write the mechanism of Hoffmann's and Fries rearrangement.K3C02 6. Prepare the following compounds from ethyl acetoacetate.K3C02	(e)		KI	COI
(f)Acetoacetic ester may be used to prepare				
(a) Ketones (b) Carboxylic acids (c) Heterocyclic compounds (d) All these(g) (a) H > Me order migratory aptitude in pinacol-pinacolone rearrangement is				~~ .
(g)The order migratory aptitude in pinacol-pinacolone rearrangement isK1CO1a) H > Me > Phb) Ph > H > Mec) Me > H > Phd) Ph > Me > HK1CO1(h)The major product obtained when 2-phenyl-2,3-pentanediol treated with an acid is a) 2-phenyl-2-methylbutanal c) 2-ethyl-2-phenylpropanal d) 2-phenyl-3-pentanoneK1CO1(i)Which metal-carbon bond will be most ionic? (a) C-Mg (b) C-Zn (c) C-LiK1CO1(j)The hybridization state of Zn in dialkylzinc compound is (a) sp1K1CO1(ii)sp1(b) sp2(c) sp3(d) UnhybridizedK1CO1(j)The hybridization state of Zn in dialkylzinc compound is (a) convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOC1 ₂) and sodium azide (NaN ₃).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO13.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2 <td>(f)</td> <td></td> <td>K1</td> <td>CO1</td>	(f)		K 1	CO1
a) $H > Me > Ph$ b) $Ph > H > Me$ c) $Me > H > Ph$ d) $Ph > Me > H$ (h)The major product obtained when 2-phenyl-2,3-pentanediol treated with an acid is a) 2-phenyl-2-methylbutanal b) 3-phenyl-2-pentanone c) 2-ethyl-2-phenylpropanal d) 2-phenyl-3-pentanoneK1CO1(i)Which metal-carbon bond will be most ionic? (a) C-Mg (b) C-Zn (c) C-Li (d) C-CdK1CO1(j)The hybridization state of Zn in dialkylzinc compound is (a) sp^1 (b) sp^2 (c) sp^3 (d) UnhybridizedK1CO12.Answer ALL questions.(5 x 2 = 10 Marks)(a)Convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl2) and sodium azide (NaN3).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO13.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2				
(h)The major product obtained when 2-phenyl-2,3-pentanediol treated with an acid is a) 2-phenyl-2-methylbutanal b) 3-phenyl-2-pentanone c) 2-ethyl-2-phenylpropanal d) 2-phenyl-3-pentanoneK1CO1(i)Which metal-carbon bond will be most ionic? (a) C-Mg (b) C-Zn (c) C-Li (d) C-CdK1CO1(j)The hybridization state of Zn in dialkylzinc compound is (a) sp^1 (b) sp^2 (c) sp^3 (d) UnhybridizedK1CO12.Answer ALL questions.(5 x 2 = 10 Marks)(a)Convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl2) and sodium azide (NaN3).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO13.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	(g)		K 1	CO1
a) 2-phenyl-2-methylbutanal c) 2-ethyl-2-phenylpropanal d) 2-phenyl-3-pentanoneK1(i)Which metal-carbon bond will be most ionic? (a) C-Mg (b) C-Zn (c) C-Li (d) C-CdK1CO1(j)The hybridization state of Zn in dialkylzinc compound is (a) sp^1 (b) sp^2 (c) sp^3 (d) UnhybridizedK1CO12.Answer ALL questions.(5 x 2 = 10 Marks)(a)Convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl ₂) and sodium azide (NaN ₃).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO13.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2				
c) 2-ethyl-2-phenylpropanald) 2-phenyl-3-pentanoneKI(i)Which metal-carbon bond will be most ionic? (a) C-Mg (b) C-Zn (c) C-LiKICOI(j)The hybridization state of Zn in dialkylzinc compound is (a) sp^1 (b) sp^2 (c) sp^3 (d) UnhybridizedKICOI2.Answer ALL questions.(5 x 2 = 10 Marks)(a)Convert salicylic acid into aspirin.K2COI(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl ₂) and sodium azide (NaN ₃).K2COI(c)Show the mechanism of Cope and oxy-Cope reaction.K2COI(d)Indicate any two synthetic applications of cyanoacetic ester.K2COI(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2COI3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	(h)		K 1	CO1
(i)Which metal-carbon bond will be most ionic? (a) C-Mg (b) C-Zn (c) C-Li (d) C-CdK1CO1(j)The hybridization state of Zn in dialkylzinc compound is (a) sp^1 (b) sp^2 (c) sp^3 (d) UnhybridizedK1CO12.Answer ALL questions.(5 x 2 = 10 Marks)(a)Convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl ₂) and sodium azide (NaN ₃).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2		a) 2-phenyl-2-methylbutanal b) 3-phenyl-2-pentanone		
(a) C-Mg(b) C-Zn(c) C-Li(d) C-Cd(j)The hybridization state of Zn in dialkylzinc compound is (a) sp1K1CO1(a) sp1(b) sp2(c) sp3(d) UnhybridizedK1CO12.Answer ALL questions.(5 x 2 = 10 Marks)(a)Convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl2) and sodium azide (NaN3).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2		c) 2-ethyl-2-phenylpropanal d) 2-phenyl-3-pentanone		
(j)The hybridization state of Zn in dialkylzinc compound isK1CO1(a) sp^1 (b) sp^2 (c) sp^3 (d) Unhybridized(5 x 2 = 10 Marks)(a)Answer ALL questions.(5 x 2 = 10 Marks)(a)Convert salicylic acid into aspirin.K2(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl ₂) and sodium azide (NaN ₃).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	(i)	Which metal-carbon bond will be most ionic?	K 1	CO1
(a) sp^1 (b) sp^2 (c) sp^3 (d) Unhybridized2.Answer ALL questions.(5 x 2 = 10 Marks)(a)Convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl ₂) and sodium azide (NaN ₃).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words $(2 x 10 = 20 Marks)$ 3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2		(a) C-Mg (b) C-Zn (c) C-Li (d) C-Cd		
2. Answer ALL questions. (5 x 2 = 10 Marks) (a) Convert salicylic acid into aspirin. K2 CO1 (b) Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl ₂) and sodium azide (NaN ₃). K2 CO1 (c) Show the mechanism of Cope and oxy-Cope reaction. K2 CO1 (d) Indicate any two synthetic applications of cyanoacetic ester. K2 CO1 (e) Explain why organolithium compounds are more reactive than Grignard reagents? K2 CO1 SECTION B Answer any TWO of the following in 150 words (2 x 10 = 20 Marks) 3. Explain the mechanism of Michael addition and MPV reduction. K3 CO2 4. Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples. K3 CO2 5. Write the mechanism of Hoffmann's and Fries rearrangement. K3 CO2 6. Prepare the following compounds from ethyl acetoacetate. K3 CO2	(j)	The hybridization state of Zn in dialkylzinc compound is	K 1	CO1
(a)Convert salicylic acid into aspirin.K2CO1(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl2) and sodium azide (NaN3).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2		(a) sp^1 (b) sp^2 (c) sp^3 (d) Unhybridized		
(b)Predict the product obtained when a carboxylic acid reacts with thionyl chloride (SOCl2) and sodium azide (NaN3).K2CO1(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	2.	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
(SOCl2) and sodium azide (NaN3).K2(c)Show the mechanism of Cope and oxy-Cope reaction.K2(d)Indicate any two synthetic applications of cyanoacetic ester.K2(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	(a)	Convert salicylic acid into aspirin.	K2	CO1
(c)Show the mechanism of Cope and oxy-Cope reaction.K2CO1(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	(b)	Predict the product obtained when a carboxylic acid reacts with thionyl chloride	K2	CO1
(d)Indicate any two synthetic applications of cyanoacetic ester.K2CO1(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2		(SOCl ₂) and sodium azide (NaN ₃).		
(e)Explain why organolithium compounds are more reactive than Grignard reagents?K2CO1SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	(c)	Show the mechanism of Cope and oxy-Cope reaction.	K2	CO1
SECTION BAnswer any TWO of the following in 150 words(2 x 10 = 20 Marks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	(d)	Indicate any two synthetic applications of cyanoacetic ester.	K2	CO1
Answer any TWO of the following in 150 words(2 x 10 = 20 Warks)3.Explain the mechanism of Michael addition and MPV reduction.K3CO24.Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples.K3CO25.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	(e)	Explain why organolithium compounds are more reactive than Grignard reagents?	K2	CO1
 Explain the mechanism of Michael addition and MPV reduction. K3 CO2 Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic acids with suitable examples. Write the mechanism of Hoffmann's and Fries rearrangement. K3 CO2 Frepare the following compounds from ethyl acetoacetate. K3 CO2 		SECTION B		
 4. Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic k3 cO2 acids with suitable examples. 5. Write the mechanism of Hoffmann's and Fries rearrangement. 6. Prepare the following compounds from ethyl acetoacetate. K3 cO2 K3 cO2 K3 cO2 	Answer	r any TWO of the following in 150 words $(2 \ge 10 = 20)$	Mark	(s)
acids with suitable examples.K35.Write the mechanism of Hoffmann's and Fries rearrangement.K36.Prepare the following compounds from ethyl acetoacetate.K3	3.	Explain the mechanism of Michael addition and MPV reduction.	K3	CO2
5.Write the mechanism of Hoffmann's and Fries rearrangement.K3CO26.Prepare the following compounds from ethyl acetoacetate.K3CO2	4.	Illustrate the effects of substituents on acidity of aliphatic and aromatic carboxylic	K3	CO2
6. Prepare the following compounds from ethyl acetoacetate. K3 CO2		acids with suitable examples.		
6. Prepare the following compounds from ethyl acetoacetate. K3 CO2	5.	Write the mechanism of Hoffmann's and Fries rearrangement.	K3	CO2
	6.	-	K3	CO2

	(v) Uracil		
	SECTION C		
Answe	er any TWO of the following in 150 words $(2 \ge 10)$	0 Mar	ks)
7.	Compare the mechanism of benzoin and Claisen condensation.	K4	CO3
8.	Distinguish between maleic and fumaric acids with reactions.	K4	CO3
9.	Illustrate the applications of pinacol-pinacolone rearrangement with any two examples.	K4	CO3
10.	Analyse any five applications of Grignard reagent.	K4	CO3
	SECTION D		
Answe	er any TWO of the following in 250 words $(2 \times 20 = 4)$	40 Mai	:ks)
11.	a) Summarize the reactions of any two characteristic tests for an aromatic aldehyde.b) Compare Norrish type I and II reactions with an example for each.	K5	CO4
12.	 a) Summarize any one method of preparation for the following compounds. (i) Lactic acid (ii) Pyruvic acid (iii) Glutaric acid (iv) Pimelic acid (v) Crotonic acid b) Compare the mechanism of acid and alkaline hydrolysis of an ester. 	K5	CO4
13.	a) Construct a plausible mechanism for Claisen and <i>para</i>-Claisen rearrangement with an example.b) Write the mechanism of benzil-benzilic and Beckmann rearrangement.	K6	CO5
14.	 a) Prepare the following compounds using diethyl malonate. (i) 2-Methyl butanoic acid (ii) Cyclobutane carboxylic acid b) Write any two method of preparation and any three synthetic applications of organolithium compound. 	K6	CO5

UNIT WISE DISTRIBUTION OF CL AND CO BASED QUESTIONS AND MARKS FOR END OF SEMESTER QUESTION PAPER SETTING FOR UG COURSES (MC, AR, AO, MS, ME and GL)

	SECTION	A	SECTION B	SECTION C	SECTION	D
	(1 Mark/Q	Juestion)	(10 Marks/Question)	(10 Marks/Question)	(20 Marks/Question)	
	K1	K2	К3	K4	К5	K6
UNIT I	2 (1)	1 (2)	-	1 (10)	1 (20)	-
UNIT II	2 (1)	1 (2)	1 (10)	1 (10)	1 (20)	-
UNIT III	2 (1)	1 (2)	1 (10)	1 (10)	-	1 (20)
UNIT IV	2 (1)	1 (2)	1 (10)	1 (10)	-	0.5 (10)
UNIT V	2 (1)	1 (2)	1 (10)	-	-	0.5 (10)
No. of CL based Questions with Max. Marks	10 (10)	5 (10)	2 (20)	2 (20)	2 (40)	2 (40)
No. of CO based Questions with Max. Marks	CO1		CO2	CO3	CO4	CO5
	15 (20)		2 (20)	2 (20)	2 (40)	2 (40)

* MC-Major Core, AR–Allied Required, AO–Allied Optional, MS-Major Skill, ME-Major Elective, GL-General Languages.

> In Section D students have choice between K5 and K6.

CL AND CO BASED MARKS DISTRIBUTION FOR DIRECT ASSESSMENTS OF UG COURSES MC, AR, AO, MS, ME and GL

SECTION	CL	СО	CIA I	CIA II	III Component	Semester	Total (200)	CL and CO %
А	K1, K2	CO1	6	6	20	20	52	26%
В	К3	CO2	6	6	10	20	42	21%
С	K4	CO3	6	6	10	20	42	21%
D	K5, K6	CO4, CO5	12	12	-	40	64	32%

* MC-Major Core, AR–Allied Required, AO–Allied Optional, MS-Major Skill, ME-Major Elective, GL-General Languages.

CL AND CO BASED CIA QUESTION PAPER FORMAT FOR UG LAB COURSES* (MC, AR, AO, MS, ME and GL)

SECTION	MARKS	Q. NO	K1	K2	К3	K4	K5	K6
A	10	1	+					
		2		+				
В	10	3			+			
C	10	4				+		
D	10	5					+	
Ε	10	6						+
No. of CL based Qu	estions with Ma	x. marks	1(5)	1(5)	1(10)	1(10)	1(10)	1(10)
No. of CO based Questions with Max. marks			C	01	CO 2	CO 3	CO 4	CO 5
			2(10)	1(10)	1(10)	1(10)	1(10)

No Comp III for Lab Courses and total marks assigned to CIA is 50

This template for Lab Courses is suggestive. But based on specific requirements if a department wants to develop a common template (Only one) for all its Lab courses it is encouraged to do so, but the template must have all Cognitive Levels and the final version

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 60034

Department of Chemistry

FIRST CONTINUOUS ASSESSMENT TEST, JULY 2021

Chemistry Lab Course (MC/AR/AO)

II BSc Chemistry

Time: 10.00 am to 1.00 pm

Date: Max. Marks: 50

SEC	ΓΙΟΝ Α	(10 M	arks)
1.	Recall the principle of the experiment / MCQ	K1	CO1
2.	Record work	K2	CO1
SEC'	ΓΙΟΝ Β	(10 M	arks)
3.	Perform preliminary tests / procedure of the experiment	K3	CO2
SEC	ΓΙΟΝ C	(10 M	(arks)
4.	Experiment / Recording / Table / graph/ Confirmatory tests	K4	CO3
SEC'	ΓΙΟΝ D	(10 M	arks)
5.	Calculation / Preparation / Derivatization / Observation & Inference	K5	CO4
SEC'	ΓΙΟΝ Ε	(10 M	arks)
6.	Consolidate, summarize and present the results of the experiments	K6	CO5

CL AND CO BASED END SEMESTER QUESTION PAPER FORMAT FOR UG LAB COURSES* (MC, AR, AO, ME)

SECTION	MARKS	Q. NO	K1	K2	K3	K4	K5	K6
Α	10	1	+					
	10	2		+				
В	20	3			+			
С	20	4				+		
D	20	5					+	
Е	20	6						+
No. of CL based Qu	estions with Max. 1	narks	1(10)	1(10)	1(20)	1(20)	1(20)	1(20)
No. of CO based Questions with Max. marks			CO	1	CO 2	CO 3	CO 4	CO 5
			2(2	0)	1(20)	1(20)	1(20)	1(20)

No Comp III for Lab Courses and total marks assigned to Semester is 100

This template for Lab Courses is suggestive. But based on specific requirements

if a department wants to develop a common template (Only one) for all its Lab courses it is encouraged to do so, but the template must have all Cognitive Levels and the final version of the template should be sent to us for approval.

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI 60034 Department of Chemistry END SEMESTER EXAMINATION, NOVEMBER 2021

Chemistry Lab Course (MC/AR/AO)

II BSc Chemistry Time: 10.00am to 1.00 pm

Date: Max. Marks: 100

SEC	TION A	(20 M	arks)	
1.	Recall the principle of the experiment / MCQ	K1	CO1	
2.	Record work	К2	C01	
SEC	TION B	(20 M	arks)	
3.	Perform preliminary tests / procedure of the experiment	K3	CO2	
SEC	TION C	(20 M	larks)	
4.	Experiment / Recording / Table / graph/ Confirmatory tests	K4	CO3	
SEC	TION D	(20 M	arks)	
5.	Calculation / Preparation / Derivatization / Observation & Inference	K5	CO4	
SEC	SECTION E			
6.	Consolidate, summarize and present the results of the experiments	K6	CO5	