LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.C.A.& Bsc. DEGREE EXAMINATION – **COMPUTER SCIENCE & APPLI.**

SECOND SEMESTER – APRIL 2022

UCS 2503/UCA 2501 – OPERATING SYSTEM

(21 BATCH ONLY)

Date: 16-06-2022 Dept. No. Time: 01:00 PM - 04:00 PM Max.: 100 Marks

	SECTION A					
Answ	ver ALL the Questions					
1.	Define the following (5	$(5 \times 1 = 5)$				
а	Context switch	K1	CO1			
b	Semaphores	K1	CO1			
c	Safe state	K1	CO1			
d	Compaction	K1	CO1			
e	Page fault	K1	K1 CO1			
2.	Choose the best answer (5	(5x1=5)				
a)	 The primary purpose of an operating system is i. To make the most efficient use of computer hardware. ii. To allow the people to use the computer iii. To keep systems programmers employed iv. To make computers easier to use. 	K1	CO1			
b)	 Where are placed the list of processes that are prepared to be executed and waiting? Job queue Ready queue. Execution queue Process queue 	K1	CO1			
c)	The banker's algorithm is used i. To rectify deadlock ii. To detect deadlock iii. To prevent deadlock. iv. To solve deadlock	K1	CO1			
d)	 Which one of the following is the address generated by CPU? i. physical address ii. absolute address iii. logical address iv. Frame offset 	K1	CO1			
e)	The heads of the magnetic disk are attached to a that moves all the heads as a unit. i. spindle ii. disk arm iii. track iv. none of the mentioned	K1	CO1			
3.	Fill in the blanks(5 x 1)	1 = 5)				
a)	The number of processes completed per unit time is known as	K2	CO1			
h)	Max resource- Allocation resource =	к2	CO1			
<i></i>						
c)	Belady's anomaly may occur inpage replacement algorithm,	K2	COI			

d)	Allocate the smalles	t hole that is big	enough is —	K2	CO1		
e)	The user who created the file is the —				CO1		
4.	State TRUE or FALSE $(5 \times 1 = 5)$						
a)	Virtual memory space is always smaller than physical memory space.						
b)	Usually, there's one	I/O queue for th	e system	K2	CO1		
c)	A segmented memory model is good for separating code from data				CO1		
d)	The scheduler is the part of an operating system that determines the priority of						
4)	each process						
e)	A context switch can occur only after processing a timer interrupt, but not after				CO1		
	any other system call or interrupt.						
			SECTION B				
Answ	er any TWO of the f	ollowing in 100	words (2 x	10 = 20	0)		
5.	Explain the five m	ajor activities of	f an operating system with regard to	K3	CO2		
	process manageme	nt.					
6.	Illustrate critical section problem and the requirements for a solution to the				CO2		
	critical problem						
7.	Explain the fragme	K3	CO2				
8.	Write the Bankers	algorithm for		K3	CO2		
	i.Safety algorithm	ii. Resource req	quest algorithm.				
		ļ	SECTION C	áá			
Answ	er any TWO of the f	ollowing in 100	words (2 z	x 10 = 2	20)		
9.	Analyse the differe	nt operations on	process and cooperating process.	K4	CO3		
10.	Explain Deadlocks	and necessary c	onditions for Deadlocks.	K4	CO3		
11.	Criticize any three page replacement algorithm with its advantages.				CO3		
12.	Explain the proced	ure for handling	the page fault with neat diagram.	K4	CO3		
			SECTION D				
Answ	er any ONE of the fo	llowing in 250 v	words (1 x	x 20 = 2	20)		
13.	Consider the follo	wing set of proce	esses, with the length of the CPU burst	K5	CO4		
	given in milliseconds:						
	Process Burst	Priority					
	time						
	P1 10	3					
	P2 1	1					
	P3 2	3					
	P4 1	4					
	P5 5	2					
	Evaluate the avera	ge turnaround ti	me and average waiting time for FCFS,				
	SJF and Priority scheduling algorithms.						
14.	Consider a disk request queue on cylinder 82,170,43,140,24,16,190 and the				CO4		
	current position is 50.						
	Evaluate the total seek time for the FCFS, SSTF, SCAN, C-SCAN						
	algorithms						
			SECTION E	l			
Answ	Answer any ONE of the following in 250 words $(1 \times 20 = 20)$						
15.	Report the fundam	ental models of i	inter process communication	K6	CO5		
16.	Compile different	lisk allocation te	echniques with neat diagram.	K6	CO5		
3		(