LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.C.A. DEGREE EXAMINATION - COMPUTER APPLICATIONS
 FIRST SEMESTER - NOVEMBER 2022
 UCS 1301 - OPERATIONS RESEARCH

Date: 01-12-2022
Time: 01:00 PM - 04:00 PM

Max. : 100 Marks

SECTION A			
Answer ALL the Questions			
1.	Answer the following.	($5 \times 1=5$)	
a)	What is operations research?	K1	CO1
b)	List the condition for solving transportation problem.	K1	CO1
c)	Define Replacement models.	K1	CO1
d)	Define dummy activity.	K1	CO1
e)	State the inventory models.	K1	CO1
2.	Multiple Choice Questions.	($5 \times 1=5$)	
a)	Which one is the scope of OR? 1. Finance and accounting 2. Marketing 3. Production 4. All the above	K1	CO1
b)	Transportation problem said to be unbalanced when \qquad 1. Production equal to demand 2. Production not equal to demand 3. Production more than demand 4. Both 2 \& 3	K1	CO1
c)	To find the sequence of the jobs which minimizes the total time taken for the completion of the job is called \qquad 1. Sequencing problem 2. Replacement problem 3. Assignment problem 4. None of the above	K1	CO1
d)	\qquad is the minimum time taken to complete the project. 1. Optimistic 2. Most likely 3. Pessimistic 4. Good	K1	CO1
e)	The period of time between two consecutive placement of orders is called \qquad 1. Order cycle 2. Lead time 3. Holding cost 4. Production cost	K1	CO1
3.	True or False.		= 5)
a)	A set of all values of the variables satisfy all the constraints it is called feasible solution.	K2	CO1
b)	Transportation problem deals with the transportation of commodity from different sources to different destinations.	K2	CO1

SECTION C

Answer any TWO of the following in 100 words

($2 \times 10=20$)
9. A machine costs Rs. 12,200. The scrap value is Rs.200. The maintenance costs of the machine are given below:

Year	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Mainte- nance cost	200	500	800	1200	1800	2500	3200	4000

When should the machine be replaced?
10. A marketing manager has 5 salesmen and 5 sales districts. Considering the capabilities of the salesman and the nature of districts, the marketing manager estimates that sales per month (in hundred rupees) for each salesman in each district would be as follows:

Salesman	Sales District				
	A	B	C	D	E
1	32	38	40	28	40
2	40	24	28	21	36
3	41	27	33	30	37
4	22	38	41	36	36
5	29	33	40	35	39

What is the maximum sale that may be expected if an optimum assignment is made?
11. The annual demand for an item is 3200 units. The unit cost is Rs.6. The inventory carrying cost is 25% per annum per unit. The cost of one procurement is Rs.150.

Determine

(i) EOQ
(ii) Number of orders per year
(iii) Time between two consecutive orders
(iv) Total annual cost
12. A small Project consisting of 12 activities have the following information regarding duration of the various activities.

Operati ons	0,1	0,2	0,3	1,4	2,3	2,6	3,4	3,5	4,7	5,6	5,7	6,7
Durati ons	5	8	3	4	0	7	4	6	6	7	2	6

(i)Draw the CPM Network
(ii) Find the critical path.
(iii) Calculate Earliest Start Time, Earliest Finish Time, Latest Start Time , Latest Finish Time and Total Float.

SECTION D

Answer any ONE of the following in $\mathbf{2 5 0}$ words
($\mathbf{1 \times 2 0 = 2 0)}$

13.	Solve by simplex method Maximize $Z=x_{1}-x_{2}+3 x_{3}$ subject to the constraints $\begin{aligned} & \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} \leq 10 \\ & 2 \mathrm{x}_{1}-\mathrm{x}_{3} \leq 3 \\ & 2 \mathrm{x}_{1}-2 \mathrm{x}_{2}+3 \mathrm{x}_{3} \leq 0 \quad x_{1,}, x_{2}, x_{3} \geq 0 \end{aligned}$						
14.	A steel firm has 4 plants which purchase coal for their productio cost of shipping (in 100's of RS.) one ton of coal from each m given below:						
	Plants ${ }^{\text {apacity }}$						
			P1	P2	P3	P4	
	Mines	M1	3	1	4	5	50
	Mines	M2	7	3	8	6	50
		M3	2	3	9	2	75
	Demand		40	55	60	20	

How much coal should the firm purchase from each mine in order to satisfy the demand of the plants at minimal shipping expenses.(Using Matrix minimum method)

SECTION E

Answer any ONE of the following in $\mathbf{2 5 0}$ words

15.	Determine the sequence which m three machines A, B and C. The	$\begin{aligned} & \text { nim } \\ & \text { pllo } \end{aligned}$	the total timtable give 1 2 8 10 5 6 4 9	for pro3 6 2 8	$\begin{gathered} \text { essin } \\ \text { sing } \end{gathered}$	ve jobs on es. 5 11 4 5	K6	CO5
16.	Given the following information						K6	CO5
	Activity	a	m	b				
	1-2	3	6	15				
	1-6	2	5	14				
	2-3	6	12	30				
	2-4	2	5	8				
	3-5	5	11	17				
	4-5	3	6	15				
	6-7	3	9	27				
	5-8	1	4	7				
	7-8	4	19	28				
	i) Draw the Project ii) Find the length and iii) Find the critical iv) Find the length an	va	of each ce of the crit	vity. al path				

