PART - A

Answer ALL questions:

$$
(10 \times 2=20 \text { marks })
$$

1. Show that the function $f(z)=\frac{\bar{z}}{z}$ does not have a limit as $\mathrm{z} \rightarrow 0$.
2. Test whether the following function $f(z)=e^{x}(\cos y+i \sin y)$ is analytic or not.
3. Find the critical points of $w=z+\frac{1}{z}$.
4. Define Cross ratio.
5. Define a simply connected region.
6. Using Cauchy's integral formula evaluate $\int_{c} \frac{z^{2}+5}{z-3} d z$ where c is $|z|=4$.
7. Expand $\mathrm{f}(\mathrm{z})=\frac{1}{z}$ in a Taylor's series about $\mathrm{z}=\mathrm{i}$.
8. Find all zero's of $f(z)=\cos z$.
9. Find the residue of $\cot \mathrm{z}$ at $\mathrm{z}=0$.
10. State fundamental theorem of algebra.
PART - B

Answer any FIVE questions: ($5 \times 8=40$ marks)
11. Derive the Cauchy - Riemann equations in Polar form.
12. Show that $u=\log \sqrt{x^{2}+y^{2}}$ is harmonic and determine its harmonic Conjugate.
13. Find the image of the strip $2<x<3$ under $w=\frac{1}{z}$.
14. State and Prove Morera's theorem.
15. Using Cauchy's integral formula evaluate $\int_{c} \frac{e^{z} d^{z}}{(z+2)(z+1)^{2}}$, where C is $|z|=3$.
16. If $f(z)=\frac{z+4}{(z+3)(z-1)^{2}}$ find Laurent's series expansions in (i) $0<|z-1|<4$ and (ii) $|z-1|>4$.
17. State and prove Argument theorem.
18. Using contour integration prove that $\int_{0}^{\infty} \frac{\cos x}{1+x^{2}} d x=\frac{\pi}{2 e}$.
PART - C

Answer any TWO questions:
($2 \times 20=40$ marks $)$
19. State and prove the necessary and sufficient conditions for $f(z)$ to be analytic.
20. (a) Find the bilinear transformation which maps the points $\mathrm{z}=-1,1, \infty$ respectively on $\mathrm{w}=-\mathrm{i},-1$, i .
(b) Find an analytic function $f(z)=u+i v$ if $u+v=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$.
21. (a) Using Cauchy's integral formula evaluate $\int_{C} \frac{z^{3} d z}{(2 z+i)^{3}}$, where C is the unit circle.
(b) Prove that $\int_{0}^{\pi} \frac{a d \theta}{a^{2}+\sin ^{2} \theta}=\frac{\pi}{\sqrt{a^{2}+1}}(\mathrm{a}>0)$.
(10+10)
22. (a) State and prove Laurent's series.
(b) Find the Laurent's series expansion of the function $\frac{z^{2}-1}{(z+2)(z+3)}$ valid in the annular region $2<|z|<3$.

