MT 6606 - COMPLEX ANALYSIS

PART - A

Answer ALL questions:

1. Show that the function $f(z) = \frac{z}{z}$ does not have a limit as $z \rightarrow 0$.

- 2. Test whether the following function $f(z) = e^{x}(\cos y + i \sin y)$ is analytic or not.
- 3. Find the critical points of $w = z + \frac{1}{z}$.
- 4. Define Cross ratio.
- 5. Define a simply connected region.

6. Using Cauchy's integral formula evaluate
$$\int_{c} \frac{z^2 + 5}{z - 3} dz$$
 where c is $|z| = 4$.

- 7. Expand $f(z) = \frac{1}{z}$ in a Taylor's series about z = i.
- 8. Find all zero's of $f(z) = \cos z$.
- 9. Find the residue of $\cot z$ at z = 0.
- 10. State fundamental theorem of algebra.

PART - B

Answer any FIVE questions: $(5 \times 8 = 40 \text{ marks})$

- 11. Derive the Cauchy Riemann equations in Polar form.
- 12. Show that $u = \log \sqrt{x^2 + y^2}$ is harmonic and determine its harmonic Conjugate.
- 13. Find the image of the strip 2 < x < 3 under $w = \frac{1}{z}$.
- 14. State and Prove Morera's theorem.

15. Using Cauchy's integral formula evaluate
$$\int_{c} \frac{e^{z} d^{z}}{(z+2)(z+1)^{2}}$$
, where C is $|z| = 3$.

16. If
$$f(z) = \frac{z+4}{(z+3)(z-1)^2}$$
 find Laurent's series expansions in (i) $0 < |z-1| < 4$ and (ii) $|z-1| > 4$.

- 17. State and prove Argument theorem.
- 18. Using contour integration prove that $\int_0^\infty \frac{\cos x}{1+x^2} dx = \frac{\pi}{2e}.$

(10 x 2 = 20 marks)

PART - C

Answer any TWO questions:

- 19. State and prove the necessary and sufficient conditions for f(z) to be analytic.
- 20. (a) Find the bilinear transformation which maps the points $z = -1, 1, \infty$ respectively on w = -i, -1, i.
 - (b) Find an analytic function f(z) = u + iv if $u + v = \frac{\sin 2x}{\cosh 2y \cos 2x}$. (8+12)
- 21. (a) Using Cauchy's integral formula evaluate $\int_C \frac{z^3 dz}{(2z+i)^3}$, where C is the unit circle.

(b) Prove that
$$\int_0^{\pi} \frac{ad\theta}{a^2 + \sin^2 \theta} = \frac{\pi}{\sqrt{a^2 + 1}}$$
 (a>0). (10+10)

- 22. (a) State and prove Laurent's series.
 - (b) Find the Laurent's series expansion of the function $\frac{z^2 1}{(z+2)(z+3)}$ valid in the annular region 2 < |z| < 3. (12+8)

\$\$\$\$\$\$\$