B.Sc.DEGREE EXAMINATION -MATHEMATICS

FIFTH SEMESTER - APRIL 2019
16UMT5MCO3- LINEAR ALGEBRA

Date: 22-04-2019 Time: 09:00-12:00 Dept. No. \square Max. : 100 Marks

Part-A

Answer ALL the questions.

1. Define a vector Space.
2.If V is a vector space over F , then prove that $-(\alpha v)=(-\alpha) v$ for $\alpha \in F$ and $v \in V$.
2. Define a inner product space.
3. Prove that W^{\perp} is a subspace of V .
4. Define regular linear transformation.
5. Prove that if V is finite dimensional over F and if $T \in A(V)$ is right invertible then it is invertible.
6. When the linear transformation $S, T \in A(V)$ are said to be similar?
7. Define matrix of a linear transformation T.
8. $T \in A(V)$ is unitary if and only if $T T^{*}=1$
10.If N is normal and $A N=N A$ prove that $A N^{*}=N^{*} A$

PART-B

Answer any FIVE questions.
11.Prove that if V is the internal direct sum of $U_{1}, U_{2}, \ldots U_{n}$, then V is isomorphic to the external direct sum of $U_{1}, U_{2}, \ldots U_{n}$.
12.State and prove Schwarz inequality.
13.If V is finite dimensional over F , then $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not zero.
14.Prove that if V is ndimensional over F and if $T \in A(V)$ has the matrix $m_{\mathrm{l}}(T)$ in the $\operatorname{basis} v_{1}, v_{2}, v_{3}, \ldots . v_{n}$ and the matrix $m_{2}(T)$ in the basis $w_{1}, w_{2}, w_{3}, \ldots . w_{n}$ of V over F , then there is an element $c \in F_{n}$ such that $m_{2}(T)=c m_{1}(T) c^{-1}$
15. If $T \in A(V) \mathrm{i}_{\mathrm{s}} \overline{\text { such that }<} \overline{v T, v>=} \overline{\text { for all }} \overline{v \in V \text { the }} \overline{\mathrm{n} \text { show that }} \overline{T=} \overline{0}$.
16. If $T \in A(V)$ is Hermitian, then all its characteristic roots are real.
17.If $S, T \in A(V)$ and if S is regular, then T and $S T S^{-1}$ have the same minimal polynomial.
18. If V is a vector space over F and if W is a subspace of V , then prove that V / W is a vector space over F .

PART-C

Answer any TWO questions,
($2 \times 20=40$)
19 (a)Prove that if $v_{1}, v_{2}, \ldots v_{n}$ is basis of V over F and if $w_{1}, w_{2}, \ldots w_{m}$ in V are linearly independent over F , then $m \leq n$.
(b)If V is a vector space over F and if W is a subspace of V . Prove that W is finite

$$
\begin{equation*}
\text { dimensional, } \operatorname{dim} W \leq \operatorname{dim} V \text { and } \operatorname{dim} V / W=\operatorname{dim} V-\operatorname{dim} W \tag{10+10}
\end{equation*}
$$

20 (a) State and prove Gram-Schmidt orthogonalization process.
(b)If $\lambda \in$ Fisacharacteristic root of $T \in A(V)$ then for any polynomial $q(x) \in F[x], q(\lambda)$ is a characteristic root of $q(T)$.

21 (a)If V is finite dimensional over F then for $S, T \in A(V)$, prove the following
(i) $r(S T) \leq r(T)$
(ii) $r(T S) \leq r(T)$
(iii) $r(S T)=r(T S)=r(T)$ for S regular in $A(V)$.
(b) If $T \in A(V)$ has all its characteristic roots in F , and then prove that there is a basis of V in which the matrix of T is triangular.
22.If $T \in A(V)$ then prove that the following
(i) $T^{*} \in A(V)$
(ii) $(S+T)^{*}=S^{*}+T^{*}$
(iii) $(\lambda S)^{*}=\bar{\lambda} S^{*}$
(iv) $(S T)^{*}=T^{*} S^{*}$ for all $S, T \in A(V)$.

