LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
B.Sc.DEGREE EXAMINATION -MATHEMATICS	
FIFTH SEMESTER – APRIL 2019	
16UMT5MC03- LINEAR ALGEBRA	
Date: 22-04-2019 Dept. No. Max. : Time: 09:00-12:00	: 100 Marks
Part-A	
Answer ALL the questions. (1	0X 2=20)
1. Define a vector Space.	
2. If V is a vector space over F, then prove that $-(\alpha v) = (-\alpha)v$ for $\alpha \in F$ and $v \in V$.	
3. Define a inner product space.	
4. Prove that W^{\perp} is a subspace of V.	
5. Define regular linear transformation.	
6. Prove that if V is finite dimensional over F and if $T \in A(V)$ is right invertible then it is invertible.	
7. When the linear transformation $S, T \in A(V)$ are said to be similar?	
8. Define matrix of a linear transformation T.	
9. $T \in A(V)$ is unitary if and only if $TT^* = 1$	
10.If N is normal and $AN = NA$ prove that $AN^* = N^*A$	
PART-B	
Answer any FIVE questions. (5	5X 8=40)
11. Prove that if V is the internal direct sum of $U_1, U_2,, U_n$, then V is isomorphic to the extended	ernal direct
sum of $U_1, U_2,, U_n$.	
12.State and prove Schwarz inequality.	
13. If V is finite dimensional over F, then $T \in A(V)$ is invertible if and only if the constant term of the	
minimal polynomial for T is not zero.	
14. Prove that if V is not indimensional over F and if $T \in A(V)$ has the matrix $m_1(T)$ in the	
basis $v_1, v_2, v_3, \dots, v_n$ and the matrix $m_2(T)$ in the basis $w_1, w_2, w_3, \dots, w_n$ of V over F, then there is an	

element $c \in F_n$ such that $m_2(T) = cm_1(T)c^{-1}$

15. If $T \in A(V)$ is such that $\langle \overline{vT, v} \rangle = 0$ for all $\overline{v \in V}$ the n show that $\overline{T} = 0$.

16. If $T \in A(V)$ is Hermitian, then all its characteristic roots are real.

17. If $S, T \in A(V)$ and if S is regular, then T and STS^{-1} have the same minimal polynomial.

18. If V is a vector space over F and if W is a subspace of V, then prove that V/W is a vector space over F.

PART-C

Answer any TWO questions,

19 (a)Prove that if v_1, v_2, \dots, v_n is basis of V over F and if w_1, w_2, \dots, w_m in V are linearly independent over F,

then $m \leq n$.

(b)If V is a vector space over F and if W is a subspace of V. Prove that W is finite

dimensional, dim $W \leq dim V$ and $dim V/W = \dim V - dim W$. (10+10)

20 (a) State and prove Gram-Schmidt orthogonalization process.

(b) If $\lambda \in F$ is a characteristic root of $T \in A(V)$ then for any polynomial $q(x) \in F[x], q(\lambda)$ is a

characteristic root of q(T).

21 (a) If V is finite dimensional over F then for $S, T \in A(V)$, prove the following

(i) $r(ST) \leq r(T)$

(ii)
$$r(TS) \leq r(T)$$

(iii)r(ST) = r(TS) = r(T) for S regular in A(V).

(b) If $T \in A(V)$ has all its characteristic roots in F, and then prove that there is a basis of V in which the

matrix of T is triangular.

22. If $T \in A(V)$ then prove that the following

(i) $T^* \in A(V)$ (ii) $(S+T)^* = S^* + T^*$ (iii) $(\lambda S)^* = \overline{\lambda}S^*$

(iv) $(ST)^* = T^*S^*$ for all $S, T \in A(V)$.

(10+10)

(2 X20=40)

(12+8)