LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2019

16UMT6MC03- DISCRETE MATHEMATICS

Date: 10-04-2019
Dept. No. \square

SECTION - A

ANSWER ALL QUESTIONS
(10 X 2 = 20 Marks $)$

1. Define conjunction with truth table.
2. Construct truth table for the statement formula $P \vee\urcorner Q$.
3. Write down the Rules of Inference.
4. Define Principal Disjunctive Normal Form of a statement.
5. Define monoid with an example.
6. Define sub semigroup.
7. Define partially ordered set.
8. State isotonic property in lattice.
9. Define Boolean algebra.
10. Define Boolean homomorphism.

ANSWER ANY FIVE QUESTIONS

SECTION - B

11. Show that $(7 P \wedge(7 Q \wedge R)) \vee(Q \wedge R) \vee(P \wedge R) \Leftrightarrow R$.
12. (a) Prove that $P \rightarrow Q \Leftrightarrow\rceil \mathrm{Q} \rightarrow\rceil \mathrm{P}$
(b) Show that $(P \wedge Q) \wedge\rceil(P \vee Q)$ is a contradiction
13. Obtain DNF for the statement $\rceil(P \vee Q) \rightleftarrows(P \wedge Q)$.
14. Let $(S, *)$ be a semigroup and R be a congruence relation on $(S, *)$. Then prove that the quotient group S / R is a semigroup $(S / R, \oplus)$ where the operation \oplus corresponds to the operation $*$ on S. Also prove that there exists a homomorphism from $(S, *)$ onto $(S / R, \oplus)$ called the natural homomorphism.
15. Prove that for any commutative monoid $(M, *)$, the set of idempotent elements of M forms a sub monoid.
16. State and prove the distributive inequalities in lattice.
17. Obtain sum-of-product canonical form for $(x \oplus y) *\left(x^{\prime} \oplus z\right) *(y \oplus z)$
18. Prove that in a complemented distributive lattice, complement is unique.

SECTION -C

ANSWER ANY TWO QUESTIONS ($2 \times 20=40$ Marks)

19. (a) Show that $((P \vee Q) \wedge\rceil(7 \mathrm{P} \wedge(7 \mathrm{Q} \vee\rceil \mathrm{R}))) \vee(7 \mathrm{P} \wedge\rceil \mathrm{Q}) \vee(7 \mathrm{P} \wedge\rceil \mathrm{R})$ is a tautology.
(b) Construct truth table for $[(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow R)] \rightarrow R$
$(10+10)$
20. (a) Obtain the principal conjunctive normal form of $(7 \mathrm{P} \rightarrow \mathrm{R}) \wedge(\mathrm{Q} \rightleftarrows \mathrm{P})$.
(b) Show that $\mathrm{S} \vee \mathrm{R}$ is tautologically implied by $(P \vee Q) \wedge(P \rightarrow R) \wedge(Q \rightarrow S)$.

$$
(10+10)
$$

21. (a) Explain the following terms:
(i) Direct product of two Boolean algebras (ii) Lattice Homomorphism
(b)If $\langle L, \leq\rangle$ is a lattice, then for any $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{L}$, prove that $a \leq b \Leftrightarrow a \wedge b^{\prime}=0 \Leftrightarrow a^{\prime} \vee b=1 \Leftrightarrow b^{\prime} \leq a^{\prime}$.
22. (a) State and prove De Morgan's laws in lattices.
(b) Prove that the composition of two semigroup homomorphism is also a semigroup homomorphism.
$(10+10)$
