LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION – **MATHEMATICS**

SECOND SEMESTER - APRIL 2019

16/17/18UMT2MC01- ALGEBRA AND CALCULUS - II

Date: 02-04-2019 Time: 01:00-04:00

Dept. No.

Max.: 100 Marks

Part A

(10x2 = 20)

1. Evaluate $\int \left(ax + \frac{b}{r^2}\right) dx$.

Answer ALL the Questions:

- 2. State any two properties of definite integrals.
- 3. Evaluate $\int_0^3 \int_0^2 (x^2 + y^2) \, dy \, dx$.

4. When Cartesian coordinates are transformed into polar coordinates, what is the value of theJacobian?

- 5. Define Gamma functions.
- 6. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{7}\theta \, d\theta$.
- 7. State D'Alembert's Ratio test.
- 8. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)^2}{n!}$.
- 9. Write the expansion of $(1 x)^{-2}$.

10. Show that
$$\frac{\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots}{\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \cdots} = \frac{e-1}{e+1}$$
.

Part B

Answer Any FIVE Questions:

(5x8 = 40)

- 11. Sum to infinity the series $\sum_{0}^{\infty} \frac{5n+1}{(2n+1)!}$.
- 12. Prove that $log\sqrt{12} = \left(\frac{1}{2} + \frac{1}{3}\right)\frac{1}{4} + \left(\frac{1}{4} + \frac{1}{5}\right)\frac{1}{4^2} + \cdots$
- 13. Test the convergence of the series $\sum_{1}^{\infty} \left(\frac{n}{n+1}\right)^{\frac{1}{2}} x^{n}$.
- 14. Find the area of the circle $r = 2a\cos \alpha$.
- 15. Find the length of the arc of the parabola $r(1 + \cos \alpha) = 2a$ cut off by the latus rectum.
- 16. Prove that $\beta(m, n) = \beta(n, m)$.
- 17. Prove that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.
- 18. Evaluate $\iint xydxdy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$ by transforming into polar coordinates.

Part C

Answer any TWO Questions:

$(2 \times 20 = 40)$

- 19. a. Show that the series $\sum \frac{\{(n+1)r\}^n}{n^{n+1}}$ is convergent if r < 1 and divergent if r = 1.
 - b. Show that $\frac{1}{1.2.3} + \frac{1}{3.4.5} + \frac{1}{5.6.7} + \dots \infty = \log 2 \frac{1}{2}$. (10+10)
- 20. a. Derive the relation between Beta and Gamma functions.
 - b. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. (15+5)

21. a. Change the order of integration and evaluate $\int_0^a \int_{\frac{c^2}{a}}^{\frac{2a-x}{a}} xy \, dy \, dx$.

b. Find the area of the surface of the solid generated by rotating the cardioid $r = a(1 + cos\theta)$ about its line of symmetry. (10+10)

22. a. Derive the reduction formula for $\int sin^n x dx$. b. Show that $\int_0^{\frac{\pi}{4}} \log(1 + \tan \pi) d\theta = \frac{\pi}{8} \log 2$.

(10+10)
