LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION - MATHEMATICS SECOND SEMESTER - APRIL 2019

16/17/18UMT2MC02- ANA. GEO. OF 3D, FOURIER SERIES AND NUMBER THEORY

Date: 04-04-2019
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

PART - A

Answer ALL questions.

1. Find the equation of the plane through $(3,4,5)$ and parallel to the plane $2 x+3 z-z=0$.
2. Find the equation of the straight line passing through the points origin and $(5,-2,3)$.
3. Find the equation of the sphere with centre $(-1,2,-3)$ and radius 3 units.
4. Find the general equation of a sphere passing through the circle
$x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0 ; a x+b y+c z+k=0$.
5. Give an example of a function which is neither odd nor even.
6. Find a_{0} of the Fourier series for e^{x} in the interval $-\Pi<x<-\pi$.
7. Find the number of integers less than n and prime to it when $n=729$.
8. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, show that $a+c \equiv b+d(\bmod m)$.
9. If a, b, c are positive and not all equal, show that $(a+b+c)(b c+c a+a b)>9 a b c$.
10. State Wierstrass inequality.

$\underline{\text { PART - B }}$

Answer any FIVE questions
$(5 \times 8=40)$
11. Find the equation of the plane through the points $(3,1,2),(3,4,4)$ and perpendicular to the plane $5 x+y+4 z=0$.
12. Find the symmetric form of the equation of the line of intersection of the planes $3 x$ $2 y+z=1$ and $5 x+4 y-6 z=2$.
13. Find the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z+7=0$; $2 x-y+2 z=5$ as great circle.
14. Find the equation of the sphere through the points $(2,3,1),(5,-1,2),(4,3,-1)$ and $(2,5,3)$.
15. Express $f(x)=\frac{1}{2}(\pi-x)$ as a Fourier series to be valid in the interval 0 to 2π.
16. Obtain cosine series for $f(x)=\left\{\begin{array}{r}\cos x, \quad 0<x<\frac{\pi}{2} \\ 0, \frac{\pi}{2}<x<\pi\end{array}\right.$.
17. State and Prove Fermat's theorem.
18. If $a_{1}, a_{2}, \ldots . . a_{n}$ is an arithmetic progression, show that $a_{1}{ }^{2} a_{2}{ }^{2} \ldots . a_{n}{ }^{2}>a_{1}{ }^{n} a_{n}{ }^{n}$.

PART - C

Answer any TWO questions.
19.(a) Show that the origin lies in the acute angle between the planes $x+2 y+2 z=9$, $4 x-3 y+12 z+13=0$. Find the planes bisecting the angles between them and point out which bisects the obtuse angle.
(b)Find the equation of the image of the line $\frac{x-1}{9}=\frac{y-2}{-1}=\frac{z+3}{-3}$ in the plane $3 x-3 y+10 z-26=0$.
20. (a)Prove that the lines $\frac{x+1}{-3}=\frac{y+10}{8}=\frac{z-1}{2}$ and $\frac{x+3}{-4}=\frac{y+1}{7}=\frac{z-4}{1}$ are coplanar. Find the point of intersection and the plane through them.
(b) Find the equation of the sphere which passes through the circle $x^{2}+y^{2}+z^{2}-2 x-4 y=0 ; \quad x+2 y+3 z=8$ and touches the plane $4 x+3 y=25$. 21. Obtain the Fourier series for the function $\mathrm{f}(\mathrm{x})=x^{2}$ and deduce that
(i) $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\cdots=\frac{\pi^{2}}{12}$
(ii) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$.
22. (a) State and prove Wilson's theorem.
(b) Show that if $\mathrm{s}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots+\mathrm{a}_{\mathrm{n}}$, show that $\frac{s}{s-a_{1}}+\frac{s}{s-a_{2}}+\cdots+\frac{s}{s-a_{n}}>\frac{n^{2}}{n-1}$.

